
Lecture 1

1.1 Introduction

We will talk about n-variable calculus, that is, calculus on Rn. Recall the following:

• The setting is,

Rn = R× R · · · × R︸ ︷︷ ︸
n times

= {x = (x1, . . . , xn) | xi ∈ R ∀ i = 1, 2, . . . , n}

• Analysis on R consisted of ideas like open sets, compact sets, convergence, limits, differentiability,
integrability etc.

• Rn is an n-dimensional inner product space over R, with the standard orthonormal basis
{ej}nj=1

Extending the analytic ideas to Rn exploiting the algebraic structure is the matter of this course,
which further gives way to differential geometry.

1.2 Review: Rn as a vector space

(i) The standard orthonormal basis of Rn is {ei}ni=1.

(ii) For all x ∈ Rn, there is a unique representation

x =

n∑
i=1

xiei, xi ∈ R

Thus we identify x with the coordinates (x1, x2, . . . , xn).

(iii) Euclidean inner product on Rn:

For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we define

⟨x, y⟩ =
n∑

i=1

xiyi

1.3 Linear Functions

In doing analysis on R, the main motive was to study functions f : R → R and their properties,
namely continuity, differentiability, integrability etc. We now wish to do the same for functions
f : Rn → Rm for arbitrary natural numbers n,m.
Two easy examples of such functions are:
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(i) Constant maps

f : Rn → Rm

∀x ∈ Rn, f(x) = a, a ∈ Rm

(ii) Linear maps

A function L : Rn → Rm is linear if for all α ∈ R, x, y ∈ Rn, L(αx+ y) = αL(x) + L(y).

It turns out that linear maps are useful in understanding most other ‘nice’ functions, and so we now
look at these in more detail.

Let L be a linear map from Rn to Rm. Consider the domain {αx + y | α ∈ R}, that is, the line
through y in the direction of x. The image under L is,

{αLx+ Ly | α ∈ R}

which is the line through Ly in the direction of Lx. Hence, L maps lines to lines.
Exercise. Is the converse also true?

Matrix representation of a linear map

Let L : R → R be a linear map. Then,

L(x) = xL(1) ∀x ∈ R

Therefore,

L(R,R) := {set of all linear maps from R to R} ↔ R

Now consider the general case; let L : Rn → Rm be a linear map. If we fix the bases {ej}nj=1 of Rn

and {ei}mi=1 of Rm, L is determined uniquely by the equations

Lej =

m∑
i=1

aijei

and hence,

L ↔ (aij)m×n ∈ Mm,n(R)

1.4 Analytic ideas in Rn

We have the Euclidean norm on Rn defined by,

∥x∥ =

(
n∑

i=1

x2
i

) 1
2

∀x ∈ Rn

This induces the metric given as,

d(x, y) = ∥x− y∥ =

(
n∑

i=1

(xi − yi)
2

) 1
2

∀x, y ∈ Rn

Theorem 1.4.1 (Cauchy-Schwarz Inequality)

For all x, y ∈ Rn,
⟨x, y⟩ ≤ ∥x∥∥y∥
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Proof. Consider x, y ∈ Rn. We have,

n∑
i=1

n∑
j=1

(xiyj − xjyi)
2 ≥ 0

But the left-hand side is, after expanding,

n∑
i,j=1

x2
i y

2
j +

n∑
i,j=1

x2
jy

2
i − 2

n∑
i,j=1

xixjyiyj = 2∥x∥2∥y∥2 − 2 ⟨x, y⟩2

which gives the desired inequality.

Note: The proof shows that equality holds only if there is λ ∈ R such that for all i, either xi = λyi
or yi = λxi.

Recall the triangle inequality for R, for all x, y ∈ R

|x+ y| ≤ |x|+ |y|

Theorem 1.4.2 (Triangle inequality for Rn)

For all x, y ∈ Rn,
∥x+ y∥ ≤ ∥x∥+ ∥y∥

Proof. We have,

∥x+ y∥2 = ⟨x+ y, x+ y⟩

= ∥x∥2 + 2 ⟨x, y⟩+ ∥y∥2

≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥ (Cauchy Schwarz inequality)

=⇒ ∥x+ y∥ ≤ ∥x∥+ ∥y∥

which is the desired inequality.

The following is a technical result, which can be thought of as an analogue of the Lipschitz condition
for linear maps on Rn. It hints towards continuity of linear maps, and we will see that it is indeed so
later.

Theorem 1.4.3

Let L : Rn → Rm be a linear map. There is M > 0 such that

∥Lx∥ ≤ M∥x∥ ∀x ∈ Rn

Proof. We have, for x =
∑n

i=1 xiei,

∥Lx∥ =

∥∥∥∥∥
n∑

i=1

xiLei

∥∥∥∥∥
≤

n∑
i=1

|xi|∥Lei∥ (Triangle inequality)

=⇒ ∥Lx∥ ≤ ∥x∥

(
n∑

i=1

∥Lei∥2
) 1

2

(Cauchy Schwarz inequality)

Taking M =
(∑n

i=1 ∥Lei∥
2
) 1

2

, we get the result.
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