Lecture 1

1.1 Introduction
We will talk about n-variable calculus, that is, calculus on R™. Recall the following:

e The setting is,
R'=RxR---xR={zx=(x1,...,2,) |z ERVi=1,2,...,n}
—_———

n times

e Analysis on R consisted of ideas like open sets, compact sets, convergence, limits, differentiability,
integrability etc.
e R™ is an n-dimensional inner product space over R, with the standard orthonormal basis
{ej };‘Lzl
Extending the analytic ideas to R™ exploiting the algebraic structure is the matter of this course,
which further gives way to differential geometry.

1.2 Review: R" as a vector space

(i) The standard orthonormal basis of R™ is {e;}7;.
(ii) For all x € R™, there is a unique representation
n
T = inei, r; €R
i=1
Thus we identify x with the coordinates (x1,xa, ..., xy,).

(iii) Euclidean inner product on R™:
For x = (z1,...,%n),y = (Y1, ..., yn) € R", we define

n
<$, y> = Z TiYi
=1

1.3 Linear Functions

In doing analysis on R, the main motive was to study functions f : R — R and their properties,
namely continuity, differentiability, integrability etc. We now wish to do the same for functions
f:R™ — R™ for arbitrary natural numbers n, m.

Two easy examples of such functions are:



(i) Constant maps

f:R" - R™
Ve eR" f(x)=a,a€R™

(ii) Linear maps
A function L : R™ — R™ is linear if for all &« € R, z,y € R”, L(ax +y) = aL(z) + L(y).

It turns out that linear maps are useful in understanding most other ‘nice’ functions, and so we now
look at these in more detail.

Let L be a linear map from R™ to R™. Consider the domain {az + y | @ € R}, that is, the line
through y in the direction of z. The image under L is,

{aLz+ Ly | « € R}

which is the line through Ly in the direction of Lz. Hence, L maps lines to lines.
Exercise. Is the converse also true?

Matrix representation of a linear map

Let L : R — R be a linear map. Then,
L(z)=2L(1) VzeR

Therefore,
L(R,R) := {set of all linear maps from R to R} <+ R

Now consider the general case; let L : R" — R™ be a linear map. If we fix the bases {e;}7_; of R"
and {e;}™, of R™, L is determined uniquely by the equations

m
Lej: E aije,;
=1

and hence,
L+ (aij)an c Mm’n(R)

1.4 Analytic ideas in R"

We have the Euclidean norm on R™ defined by,

lz| = (Zﬁ) VzeR"
i=1

-

This induces the metric given as,

1
n 2
d(l‘,y) = ||$—y|| = <Z($’L_yl)2> V$7y€Rn

i=1
Theorem 1.4.1 (Cauchy-Schwarz Inequality)

For all z,y € R™,
(z,y) < llz|llly
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Proof. Consider z,y € R™. We have,

But the left-hand side is, after expanding,
n n n
2, 2 2,2 2 112 2
Soalyi+ Yyl -2 miaiyiyy = 2]yl - 2 (x,y)
i,5=1 i,j=1 i,j=1
which gives the desired inequality. O

Note: The proof shows that equality holds only if there is A € R such that for all i, either x; = A\y;
or y; = Ax;.

Recall the triangle inequality for R, for all z,y € R
|z 4yl < ||+ [y
Theorem 1.4.2 (Triangle inequality for R™)
For all z,y € R",
Iz +yll < llzll + [yl

Proof. We have,

lz +yll* = (@ +y, 2 +y)
= |l=]I* +2 (@, 9) + lly]I”
< N=l* + lwl* + 2l|l]y]l (Cauchy Schwarz inequality)
=z 4yl <=l + llyll

which is the desired inequality. O

The following is a technical result, which can be thought of as an analogue of the Lipschitz condition
for linear maps on R™. It hints towards continuity of linear maps, and we will see that it is indeed so
later.

Theorem 1.4.3
Let L : R™ — R™ be a linear map. There is M > 0 such that

|ILz|| < M|jz|| Vae€R"

Proof. We have, for z =Y | x;e;,

12l = |3 wiles
i=1
n
< Z |4 || Les]| (Triangle inequality)
i=1
n ) 2 - .
= ||Lz| < ||=| (Z | Le;]| ) (Cauchy Schwarz inequality)
i=1

1
Taking M = (2?21 ||Lei||2) *, we get the result. O
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