Lecture 1

1.1 Introduction

We will talk about *n*-variable calculus, that is, calculus on \mathbb{R}^n . Recall the following:

• The setting is,

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \cdots \times \mathbb{R}}_{n \text{ times}} = \{ x = (x_1, \dots, x_n) \mid x_i \in \mathbb{R} \, \forall \, i = 1, 2, \dots, n \}$$

- Analysis on \mathbb{R} consisted of ideas like open sets, compact sets, convergence, limits, differentiability, integrability etc.
- \mathbb{R}^n is an *n*-dimensional inner product space over \mathbb{R} , with the standard orthonormal basis $\{e_j\}_{j=1}^n$

Extending the analytic ideas to \mathbb{R}^n exploiting the algebraic structure is the matter of this course, which further gives way to differential geometry.

1.2 Review: \mathbb{R}^n as a vector space

- (i) The standard orthonormal basis of \mathbb{R}^n is $\{e_i\}_{i=1}^n$.
- (ii) For all $x \in \mathbb{R}^n$, there is a unique representation

$$x = \sum_{i=1}^{n} x_i e_i, \, x_i \in \mathbb{R}$$

Thus we identify x with the coordinates (x_1, x_2, \ldots, x_n) .

(iii) Euclidean inner product on \mathbb{R}^n :

For $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{R}^n$, we define

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$

1.3 Linear Functions

In doing analysis on \mathbb{R} , the main motive was to study functions $f : \mathbb{R} \to \mathbb{R}$ and their properties, namely continuity, differentiability, integrability etc. We now wish to do the same for functions $f : \mathbb{R}^n \to \mathbb{R}^m$ for arbitrary natural numbers n, m.

Two easy examples of such functions are:

2

(i) Constant maps

$$f: \mathbb{R}^n \to \mathbb{R}^m$$
$$\forall x \in \mathbb{R}^n, f(x) = a, \ a \in \mathbb{R}^m$$

(ii) Linear maps

A function $L : \mathbb{R}^n \to \mathbb{R}^m$ is linear if for all $\alpha \in \mathbb{R}, x, y \in \mathbb{R}^n, L(\alpha x + y) = \alpha L(x) + L(y).$

It turns out that linear maps are useful in understanding most other '*nice*' functions, and so we now look at these in more detail.

Let L be a linear map from \mathbb{R}^n to \mathbb{R}^m . Consider the domain $\{\alpha x + y \mid \alpha \in \mathbb{R}\}$, that is, the line through y in the direction of x. The image under L is,

$$\{\alpha Lx + Ly \mid \alpha \in \mathbb{R}\}$$

which is the line through Ly in the direction of Lx. Hence, L maps lines to lines. **Exercise.** Is the converse also true?

Matrix representation of a linear map

Let $L : \mathbb{R} \to \mathbb{R}$ be a linear map. Then,

$$L(x) = xL(1) \quad \forall x \in \mathbb{R}$$

Therefore,

 $\mathcal{L}(\mathbb{R},\mathbb{R}):=\{\mathrm{set}\ \mathrm{of}\ \mathrm{all}\ \mathrm{linear}\ \mathrm{maps}\ \mathrm{from}\ \mathbb{R}\ \mathrm{to}\ \mathbb{R}\}\leftrightarrow\mathbb{R}$

Now consider the general case; let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. If we fix the bases $\{e_j\}_{j=1}^n$ of \mathbb{R}^n and $\{e_i\}_{i=1}^m$ of \mathbb{R}^m , L is determined uniquely by the equations

$$Le_j = \sum_{i=1}^m a_{ij} e_i$$

and hence,

$$L \leftrightarrow (a_{ij})_{m \times n} \in M_{m,n}(\mathbb{R})$$

1.4 Analytic ideas in \mathbb{R}^n

We have the Euclidean norm on \mathbb{R}^n defined by,

$$\|x\| = \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} \quad \forall x \in \mathbb{R}^n$$

This induces the metric given as,

$$d(x,y) = ||x-y|| = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}} \quad \forall x, y \in \mathbb{R}^n$$

Theorem 1.4.1 (Cauchy-Schwarz Inequality)

For all $x, y \in \mathbb{R}^n$,

$$\langle x, y \rangle \le \|x\| \|y\|$$

1.4. ANALYTIC IDEAS IN \mathbb{R}^n

Proof. Consider $x, y \in \mathbb{R}^n$. We have,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (x_i y_j - x_j y_i)^2 \ge 0$$

But the left-hand side is, after expanding,

$$\sum_{i,j=1}^{n} x_i^2 y_j^2 + \sum_{i,j=1}^{n} x_j^2 y_i^2 - 2 \sum_{i,j=1}^{n} x_i x_j y_i y_j = 2 \|x\|^2 \|y\|^2 - 2 \langle x, y \rangle^2$$

which gives the desired inequality.

Note: The proof shows that equality holds only if there is $\lambda \in \mathbb{R}$ such that for all *i*, either $x_i = \lambda y_i$ or $y_i = \lambda x_i$.

Recall the triangle inequality for \mathbb{R} , for all $x, y \in \mathbb{R}$

$$|x+y| \le |x|+|y|$$

Theorem 1.4.2 (Triangle inequality for
$$\mathbb{R}^n$$
)
For all $x, y \in \mathbb{R}^n$,
 $\|x + y\| \le \|x\| + \|y\|$

Proof. We have,

$$||x + y||^{2} = \langle x + y, x + y \rangle$$

= $||x||^{2} + 2 \langle x, y \rangle + ||y||^{2}$
 $\leq ||x||^{2} + ||y||^{2} + 2||x|| ||y||$
 $\Rightarrow ||x + y|| \leq ||x|| + ||y||$

which is the desired inequality.

=

The following is a technical result, which can be thought of as an analogue of the Lipschitz condition for linear maps on \mathbb{R}^n . It hints towards continuity of linear maps, and we will see that it is indeed so later.

Theorem 1.4.3 Let $L: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. There is M > 0 such that $||Lx|| \le M ||x|| \quad \forall x \in \mathbb{R}^n$

|| n

Proof. We have, for $x = \sum_{i=1}^{n} x_i e_i$,

$$\|Lx\| = \left\|\sum_{i=1}^{n} x_i Le_i\right\|$$
$$\leq \sum_{i=1}^{n} |x_i| \|Le_i\|$$
$$\implies \|Lx\| \leq \|x\| \left(\sum_{i=1}^{n} \|Le_i\|^2\right)^{\frac{1}{2}}$$

Taking $M = \left(\sum_{i=1}^{n} \|Le_i\|^2\right)^{\frac{1}{2}}$, we get the result.

(Triangle inequality)

(Cauchy Schwarz inequality)

(Cauchy Schwarz inequality)

3