Lecture 2

2.1 Distance and Topology in \mathbb{R}^n

Using the inner product on \mathbb{R}^n , we get the Euclidean distance

$$d(x,y) = ||x-y|| = \sqrt{\langle x-y, x-y \rangle} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

We wish to extend the notions of $(\mathbb{R}, |\cdot|)$ to $(\mathbb{R}^n, ||\cdot||)$. We already know from Lecture 1 that the triangle inequality holds,

$$|x + y|| \le ||x|| + ||y||$$

Definition 2.1.1 \blacktriangleright Open balls

The open ball centered at $a \in \mathbb{R}^n$ of radius r is,

$$B_r(a) = \{ x \in \mathbb{R}^n \mid ||x - a|| < r \}$$

Exercise. Show that open balls are convex sets.

Definition 2.1.2 \blacktriangleright Open sets A set $\mathcal{O} \subseteq \mathbb{R}^n$ is open if $\mathcal{O} = \phi$ or for all $x \in \mathcal{O}$, there is r > 0 such that $B_r(x) \subseteq \mathcal{O}$.

Example 2.1.1

- (i) Any open ball is open.
- (ii) We define open boxes in \mathbb{R}^n to be the subsets of the form $\prod_{i=1}^n (a_i, b_i)$. Any open box is open.

Definition 2.1.3 \blacktriangleright Convergence of Sequences Let $\{x_m\}_{m\in\mathbb{N}}\subseteq\mathbb{R}^n$ and $x\in\mathbb{R}^n$. We say $x_m \longrightarrow x$ if for all $\varepsilon > 0$, there is $N\in\mathbb{N}$ such that $\|x_m - x\| < \varepsilon \forall m \ge N$ $\iff d(x_m, x) < \varepsilon \ \forall m \ge N$ $\iff x_m \in B_{\varepsilon}(x) \ \forall m \ge N$

Exercise. Show that the limit of a sequence in \mathbb{R}^n is unique whenever it exists.

Definition 2.1.4 ► Limit points

We define the deleted ε -neighbourhood of $a \in \mathbb{R}^n$ to be $D_{\varepsilon}(a) = B_{\varepsilon}(a) \setminus \{a\}$. The point a is a limit point of $S \subseteq \mathbb{R}^n$ if for all $\varepsilon > 0, D_{\varepsilon}(a) \cap S \neq \phi$. If we do not delete a, we get isolated

 $\mathbf{2}$

points.

Definition 2.1.5 ► Projections

For all $i \in \{1, 2, ..., n\}$ we define the maps

$$\Pi_i : \mathbb{R}^n \to \mathbb{R}$$
$$x = (x_1, \dots, x_n) \mapsto x_i$$

 Π_i is called the projection onto the *i*th coordinate.

Theorem 2.1.1 Let $\{x_m\}_{m \in \mathbb{N}} \cup \{x\} \subseteq \mathbb{R}^n$. Then,

$$\begin{array}{c} x_m \longrightarrow x \\ \Longleftrightarrow \ \Pi_i(x_m) \longrightarrow \Pi_i(x) \,\forall \, i \in \{1, 2, \dots, n\} \end{array}$$

Proof. Assume $x_m \longrightarrow x$. Now, for all $j \in \{1, 2, \ldots, n\}$,

$$||x_m - x||^2 = \sum_{i=1}^n |\Pi_i(x_m) - \Pi_i(x)|^2 \ge |\Pi_j(x_m) - \Pi_j(x)|^2$$
$$\implies |\Pi_j(x_m) - \Pi_j(x)| \longrightarrow 0$$
$$\implies \Pi_j(x_m) \longrightarrow \Pi_j(x)$$

Now assume $\Pi_j(x_m) \longrightarrow \Pi_j(x)$ for all $j \in \{1, 2, ..., n\}$. Then,

$$|\Pi_j(x_m) - \Pi_j(x)| \longrightarrow 0, \forall j \in \{1, 2, \dots, n\}$$
$$\implies \sum_{i=1}^n |\Pi_j(x_m) - \Pi_j(x)|^2 \longrightarrow 0$$
$$\implies ||x_m - x||^2 \longrightarrow 0$$
$$\implies x_m \longrightarrow x$$

ત	Definition 2.1.6 ► Closed sets	
	A set $C \subseteq \mathbb{R}^n$ is closed if $\mathbb{R}^n \setminus$	C is open.

Exercise. Show that a set $C \subseteq \mathbb{R}^n$ is closed iff $\forall \{x_m\}_{m \in \mathbb{N}} \subseteq C$ with $x_m \longrightarrow x$ for some $x \in \mathbb{R}^n$, we have $x \in C$.

Exercise. Show that:

- (1) Arbitrary union of open sets is open.
- (2) Finite intersection of open sets is open.
- (3) Arbitrary intersection of closed sets is closed.
- (4) Finite union of closed sets is closed.
- (5) Any finite subset of \mathbb{R}^n is closed.

Definition 2.1.7 \blacktriangleright Interior of a set Let $\phi \neq S \subseteq \mathbb{R}^n$. The interior of S is,

$$\operatorname{Int}(S) = \{a \in S \mid \exists r > 0, B_r(a) \subseteq S\}$$

Exercise. Show that:

- (1) For any nonempty set $S \subseteq \mathbb{R}^n$, Int(S) is open.
- (2) A set S is open iff Int(S) = S.

Definition 2.1.8 \blacktriangleright Exterior of a set Let $\phi \neq S \subseteq \mathbb{R}^n$. The exterior of S is, $\operatorname{Ext}(S) = \{a \in \mathbb{R}^n \mid \exists r > 0, B_r(a) \cap S = \phi\}$

Exercise. Show that $\operatorname{Ext}(S) = \operatorname{Int}(\mathbb{R}^n \setminus S)$.

Example 2.1.2

For $S = [0, 2] \setminus \{1\} = [0, 1) \cup (1, 2], 1 \notin \text{Ext}(S)$.

Definition 2.1.9 Boundary of a set Let $\phi \neq S \subseteq \mathbb{R}^n$. The boundary of S is, $\partial S = \{a \in \mathbb{R}^n \mid \forall r > 0, B_r(a) \cap S \neq \phi \text{ and } B_r(a) \cap (\mathbb{R}^n \setminus S) \neq \phi\}$

Example 2.1.3

For $S = [0, 1) \cup (1, 2] \cup \{5\}$, $\partial S = \{0, 1, 2, 5\}$ but the set of limit points is $\{0, 1, 2\}$.

Exercise. Show that:

- (1) S is open iff $S \cap \partial S = \phi$.
- (2) S is closed iff $S \supseteq \partial S$.
- (3) S is closed iff $S = \overline{S} =: S \cup \partial S = S \cup \{ \text{Limit points of } S \}$
- (4) $\overline{S} = \text{Int}(S) \sqcup \partial S$. This gives the partition $\mathbb{R}^n = \text{Int}(S) \sqcup \partial S \sqcup \text{Ext}(S)$
- (5) ∂S is closed.
- (6) Let $\{\mathcal{O}_i\}_{i=1}^n \subseteq \mathcal{P}(\mathbb{R})$ and define $\mathcal{O} = \prod_{i=1}^n \mathcal{O}_i$. If \mathcal{O}_i 's are open (closed), \mathcal{O} is open (closed).

4

2.2 Limits and Continuity

Recall the notion of limit in \mathbb{R} :

Suppose $f: (a,b) \setminus \{c\} \to \mathbb{R}$ is a function. We say $\lim f$ exists if there is $\alpha \in \mathbb{R}$ such that $\forall \varepsilon > 0, \exists \delta > 0$ such that $x \in D_{\delta}(c) \implies |f(x) - \alpha| < \varepsilon$, that is, $f(D_{\delta}(c)) \subseteq B_{\varepsilon}(\alpha)$; in such a case we say that $\lim_{x \to a} f = \alpha$.

We now extend this to \mathbb{R}^n .

Definition 2.2.1 \blacktriangleright Limits in \mathbb{R}^n Let $S \subseteq \mathbb{R}^n, a \in \{\text{Limit points of } S\}$ and, $f: S \setminus \{a\} \to \mathbb{R}^m$. We say that $\lim_{x \to a} f = b$ if for all $\varepsilon > 0$, there is $\delta > 0$ such that $f(x) \in B_{\varepsilon}(b)$ for all $x \in D_{\delta}(a) \cap S$. In other words, $\lim_{x \to a} f = b$ if for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$\|f(x) - b\| < \varepsilon \quad \forall x \in S, 0 < \|x - a\| < \delta$$

Definition 2.2.2 \blacktriangleright Continuity in \mathbb{R}^n

Let $S \subseteq \mathbb{R}^n, a \in S$ and, $f: S \to \mathbb{R}^m$. We say that f is continuous at a if for all $\varepsilon > 0$, there is $\delta > 0$ such that $f(x) \in B_{\varepsilon}(f(a))$ for all $x \in B_{\delta}(a) \cap S$, that is, $||f(x) - f(a)|| < \varepsilon$ for all $x \in S$ with $||x - a|| < \delta$.

Note: Any function defined on S is vacuously continuous at an isolated point a by our definition.