
Lecture 2

2.1 Distance and Topology in Rn

Using the inner product on Rn, we get the Euclidean distance

d(x, y) = ∥x− y∥ =
√
⟨x− y, x− y⟩ =

√√√√ n∑
i=1

(xi − yi)2

We wish to extend the notions of (R, |·|) to (Rn, ∥·∥). We already know from Lecture 1 that the
triangle inequality holds,

∥x+ y∥ ≤ ∥x∥+ ∥y∥

Definition 2.1.1 ▶ Open balls

The open ball centered at a ∈ Rn of radius r is,

Br(a) = {x ∈ Rn | ∥x− a∥ < r}

Exercise. Show that open balls are convex sets.

Definition 2.1.2 ▶ Open sets

A set O ⊆ Rn is open if O = ϕ or for all x ∈ O, there is r > 0 such that Br(x) ⊆ O.

Example 2.1.1

(i) Any open ball is open.

(ii) We define open boxes in Rn to be the subsets of the form
∏n

i=1(ai, bi). Any open box is open.

Definition 2.1.3 ▶ Convergence of Sequences

Let {xm}m∈N ⊆ Rn and x ∈ Rn. We say xm −→ x if for all ε > 0, there is N ∈ N such that

∥xm − x∥ < ε∀m ≥ N

⇐⇒ d(xm, x) < ε ∀m ≥ N

⇐⇒ xm ∈ Bε(x) ∀m ≥ N

Exercise. Show that the limit of a sequence in Rn is unique whenever it exists.

Definition 2.1.4 ▶ Limit points

We define the deleted ε-neighbourhood of a ∈ Rn to be Dε(a) = Bε(a) \ {a}. The point a is a
limit point of S ⊆ Rn if for all ε > 0, Dε(a) ∩ S ̸= ϕ. If we do not delete a, we get isolated
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points.

Definition 2.1.5 ▶ Projections

For all i ∈ {1, 2, . . . , n} we define the maps

Πi : Rn → R
x = (x1, . . . , xn) 7→ xi

Πi is called the projection onto the ith coordinate.

Theorem 2.1.1

Let {xm}m∈N ∪ {x} ⊆ Rn. Then,

xm −→ x

⇐⇒ Πi(xm) −→ Πi(x)∀ i ∈ {1, 2, . . . , n}

Proof. Assume xm −→ x. Now, for all j ∈ {1, 2, . . . , n},

∥xm − x∥2 =

n∑
i=1

|Πi(xm)−Πi(x)|2 ≥ |Πj(xm)−Πj(x)|2

=⇒ |Πj(xm)−Πj(x)| −→ 0

=⇒ Πj(xm) −→ Πj(x)

Now assume Πj(xm) −→ Πj(x) for all j ∈ {1, 2, . . . , n}. Then,

|Πj(xm)−Πj(x)| −→ 0, ∀ j ∈ {1, 2, . . . , n}

=⇒
n∑

i=1

|Πj(xm)−Πj(x)|2 −→ 0

=⇒ ∥xm − x∥2 −→ 0

=⇒ xm −→ x

Definition 2.1.6 ▶ Closed sets

A set C ⊆ Rn is closed if Rn \ C is open.

Exercise. Show that a set C ⊆ Rn is closed iff ∀ {xm}m∈N ⊆ C with xm −→ x for some x ∈ Rn, we
have x ∈ C.

Exercise. Show that:

(1) Arbitrary union of open sets is open.

(2) Finite intersection of open sets is open.

(3) Arbitrary intersection of closed sets is closed.

(4) Finite union of closed sets is closed.

(5) Any finite subset of Rn is closed.
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Definition 2.1.7 ▶ Interior of a set

Let ϕ ̸= S ⊆ Rn. The interior of S is,

Int(S) = {a ∈ S | ∃ r > 0, Br(a) ⊆ S}

Exercise. Show that:

(1) For any nonempty set S ⊆ Rn, Int(S) is open.

(2) A set S is open iff Int(S) = S.

Definition 2.1.8 ▶ Exterior of a set

Let ϕ ̸= S ⊆ Rn. The exterior of S is,

Ext(S) = {a ∈ Rn | ∃ r > 0, Br(a) ∩ S = ϕ}

Exercise. Show that Ext(S) = Int(Rn \ S).

Example 2.1.2

For S = [0, 2] \ {1} = [0, 1) ∪ (1, 2], 1 /∈ Ext(S).

Definition 2.1.9 ▶ Boundary of a set

Let ϕ ̸= S ⊆ Rn. The boundary of S is,

∂S = {a ∈ Rn | ∀ r > 0, Br(a) ∩ S ̸= ϕ and Br(a) ∩ (Rn \ S) ̸= ϕ}

Example 2.1.3

For S = [0, 1) ∪ (1, 2] ∪ {5}, ∂S = {0, 1, 2, 5} but the set of limit points is {0, 1, 2}.

Exercise. Show that:

(1) S is open iff S ∩ ∂S = ϕ.

(2) S is closed iff S ⊇ ∂S.

(3) S is closed iff S = S =: S ∪ ∂S = S ∪ {Limit points of S}

(4) S = Int(S) ⊔ ∂S. This gives the partition Rn = Int(S) ⊔ ∂S ⊔ Ext(S)

(5) ∂S is closed.

(6) Let {Oi}ni=1 ⊆ P(R) and define O =
∏n

i=1 Oi. If Oi’s are open (closed), O is open (closed).
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2.2 Limits and Continuity

Recall the notion of limit in R:
Suppose f : (a, b) \ {c} → R is a function. We say lim

x→c
f exists if there is α ∈ R such that

∀ ε > 0, ∃ δ > 0 such that x ∈ Dδ(c) =⇒ |f(x)− α| < ε, that is, f(Dδ(c)) ⊆ Bε(α); in such a case
we say that lim

x→c
f = α.

We now extend this to Rn.

Definition 2.2.1 ▶ Limits in Rn

Let S ⊆ Rn, a ∈ {Limit points of S} and, f : S \ {a} → Rm. We say that lim
x→a

f = b if for all

ε > 0, there is δ > 0 such that f(x) ∈ Bε(b) for all x ∈ Dδ(a) ∩ S.
In other words, lim

x→a
f = b if for all ε > 0, there is δ > 0 such that

∥f(x)− b∥ < ε ∀x ∈ S, 0 < ∥x− a∥ < δ

Definition 2.2.2 ▶ Continuity in Rn

Let S ⊆ Rn, a ∈ S and, f : S → Rm. We say that f is continuous at a if for all ε > 0, there
is δ > 0 such that f(x) ∈ Bε(f(a)) for all x ∈ Bδ(a) ∩ S, that is, ∥f(x)− f(a)∥ < ε for all
x ∈ S with ∥x− a∥ < δ.

Note: Any function defined on S is vacuously continuous at an isolated point a by our definition.
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