
Lecture 6

6.1 Partial Derivatives

Now, we discuss the notion of partial derivatives. This tries to treat differentiation of functions with
multiple arguments in the 1-variable setting. This construction ends up being an indispensable tool
in the computation of the Total derivative in the standard basis.

Consider a function f : On → R and a point a ∈ On, and fix 1 ≤ i ≤ n. Now, we define functions
ηi : (−ϵ, ϵ) → R such that η(t) = f(a+ tei) for all t ∈ (−ϵ, ϵ).

Definition 6.1.1 ▶ Partial Derivatives

For the given function f : On → R, the partial derivatives of f with respect to the co-ordinate
xi is given by:

fxi
(a) ≡ ∂f

∂xi
(a) :=

dηi
dt

(a) = lim
t→0

f(a+ tei)− f(a)

t
if it exists.

Considering the maps hi : R → Rn such that hi(t) = a+ tei, we have ηi = f ◦ hi. Thus, by Chain
Rule, if f is differentiable, all its partial derivatives exist.

6.2 Geometric Meaning

Figure 6.1: Geometric Meaning

The partial derivative measures the change of a
function at a point due to a particular variable,
keeping all others constant. The geometry of partial
derivatives is best visualized in 3 dimensions. Taking
f : O2 → R, we consider the surface S ⊂ R3 defined
by z = f(x, y). Let P0 = (x0, y0, f(x0, y0)) be a point
on S. Then the value fx(x0, y0) (if it exists) is the
slope of the tangent to S at (x0, y0, f(x0, y0)) pointing
in the positive x direction.
Another interpretation is to consider the plane
P = {(x, y, z) | y = y0}, and the curve C on surface
S given by C = S ∩ P. Then, fx(x0, y0) is the slope
of the tangent to the curve C, in the direction of
increasing x co-ordinate.
For f : On → R with n > 2, although it becomes
harder to visualize, the interpretation remains the
same.
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6.3 Examples

We now lay out some interesting and instructive examples, which would illustrate some general
results about partial derivatives.

Example 6.3.1

Consider f : R2 → R given by f(x, y) = x3 + y4 + sin(xy). Then,

∂f

∂x
= 3x2 + y cosxy and

∂f

∂y
= 4x3 + x cosxy

Example 6.3.2

We know that Differentiable functions f : On → R are continuous. However, even existence of all
partial derivatives is too weak to ensure continuity.
Consider f : R2 → R given by

f(x, y) =
xy

x2 + y2

Evidently, all the partial derivatives exist, but as shown previously, this function is discontinuous
at (0, 0).

Definition 6.3.1

A function f : O → R is called Ck(O) if all the kth order partial derivatives exist and are
continuous.

6.4 Higher Order Partial Derivatives

Assume that partial derivatives of f : On → R exist in a neighbourhood of a ∈ On. Then we can
talk about the partial derivatives of ∂f

∂xi
: On → R at a. We denote:

fxixj
(a) ≡ ∂fxi

∂xj
:=

∂

∂xj

∂f

∂xi
= lim

h→0

1

h

(
∂f

∂xi
(a+ hej)−

∂f

∂xi
(a)

)
We can define higher order partial derivatives similarly. Please note that the order of differentiation
matters in general. For starters, of fxixj

and fxjxi
, one may exist while the other may not. Also,

even if both exist, they may not necessarily be equal over the entire domain. We leave it to the
reader to find an example of the former case, and provide an example for the latter.

Example 6.4.1

Consider f : R2 → R given by

f(x, y) =

{
xy(x2−y2)

x2+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

In this case, it is easy to show (Exercise!) that both fxy and fyx exist, but

fxy(0, 0) = 1 ̸= −1 = fyx(0, 0)
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Example 6.4.2

However, in many well-behaved cases, we will find fxy = fyx. For instance, consider f : R2 → R
given by f(x, y) = sin(x) + ey + xy. Show that fxx = fyy = 1 over R2.

Often, the dependence of the partial derivative on the order of differentiation is the exception rather
than the rule. We now develop a sufficient condition for fxy = fyx to hold.

6.5 Clairaut’s Theorem

Theorem 6.5.1 (Clairaut)

Let (a, b) ∈ O2 and f : O2 → R. Suppose fx, fy, fxy, and fyx all exist on O2. If fxy and fyx
are continuous at (a, b), then fxy(a, b) = fyx(a, b).

Proof. Without loss of generality, we take (a, b) = (0, 0) ∈ O2. As O2 is open, we choose a box
[h, 0]× [0, k] ⊂ O2. Now, we have

fxy(x, y) =
∂2f

∂y∂x
(x, y) = lim

k→0

fx(x, y + k)− fx(x, y)

k

= lim
k→0

lim
h→0

1

hk
(f(x+ h, y + k)− f(x, y + k)− f(x+ h, y) + f(x, y))

We define

F (h, k) =
1

hk
(f(h, k)− f(0, k)− f(h, 0) + f(0, 0))

Thus, by the above result, we have

fxy(x, y) = lim
k→0

lim
h→0

F (h, k), and similarly

fyx(x, y) = lim
h→0

lim
k→0

F (h, k)

Now we proceed for the proof in earnest. Define f1(x) = f(x, k)− f(x, 0), which is continuous on
[0, h] and differentiable on (0, h). Thus, by Lagrange’s Mean Value Theorem, there exists c1 ∈ (0, h)
(depending upon both h and k), such that, h(f ′

1(c1)) = (f1(h)− f1(0)), i.e.

∴ fx(c1, k)− fx(c1, 0) =
1

h
(f(h, k)− f(0, k)− f(h, 0) + f(0, 0)) = kF (h, k)

=⇒ F (h, k) =
1

k
(fx(c1, k)− fx(c1, 0))

Again, define f2(y) = fx(c1, y), which again satisfies all conditions for the Mean Value Theorem.
Thus, there exists c2 ∈ (0, k) such that k(f ′

2(c2)) = (f2(k)− f1(0)), which gives, F (h, k) = fxy(c1, c2).
Repeating this entire construction, we can find (c′1, c

′
2) ∈ [0, h]× [0, k] such that F (h, k) = fyx(c

′
1, c

′
2).

Thus, fxy(c1, c2) = fyx(c
′
1, c

′
2). But, 0 < c1, c

′
1 < h and 0 < c2, c

′
2 < k. Thus, as (h, k) can be made

arbitrarily small, taking (h, k) → 0, we have

lim
(c1,c2)→0

fxy(c1, c2) = lim
(c′1,c

′
2)→0

fyx(c
′
1, c

′
2)

By the continuity of fxy and fyx, we have fxy(0, 0) = fyx(0, 0) .

In particular, fxy = fyx for C2 functions over a given domain. In the next lecture, we sharpen this
result slightly, and relate the partial derivatives to the total derivative.
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