
Lecture 7

7.1 Schwarz Theorem

In the previous lecture, we discussed the notion of partial derivatives. In general, the partial
derivatives depend on the order of differentiation. However, using Clairaut’s Theorem, we found a
necessary when fxy = fyx. Now, we conclude that discussion by the following result.

Theorem 7.1.1 (Schwarz)

Let (a, b) ∈ O2 and f : O2 → R. Suppose fx, fy, and fxy exist on O2. If fxy is continuous at
(a, b), then fyx exists in a neighbourbood of (a, b) and fxy(a, b) = fyx(a, b).

Proof. Just as before, we take (a, b) = (0, 0). From the proof of Clairaut’s Theorem, we have
F (h, k) = fxy(c1, c2) for some 0 < c1 < h and 0 < c2 < k. By continuity of fxy at (0, 0), for any
ϵ > 0 there exists hϵ, kϵ > 0, such that

| fxy(u, v)− fxy(0, 0) |< ϵ ∀ (u, v) ∈ [0, hϵ]× [0, kϵ]

But then | F (h, k)− fxy(0, 0) |< ϵ ∀ (u, v) ∈ [0, hϵ]× [0, kϵ], that is, F is continuous at (0, 0) with
limit fxy(0, 0) at (0, 0).
As fy(h, 0) exists for h sufficiently small, limk→0 F (h, k) exists for h sufficiently small. Thus, by
continuity of F at (0, 0),

lim
h→0

lim
k→0

F (h, k) exists and is equal to lim
(h,k)→(0,0)

F (h, k)

Thus, fyx(0, 0) exists and is equal to fxy(0, 0)

This is a slightly more useful version of Clairaut’s Theorem. However, in many applications (say,
partial differential equations), we work with C2 or even C∞ functions, in which case both of these
hold automatically.

Exercise: Formulate and prove a similar result for higher order derivatives. In particular, provide a
sufficient condition for f : On → R so that

∂nf

∂xi1∂xi2 . . . ∂xim

=
∂nf

∂xσ(i1)∂xσ(i2) . . . ∂xσ(im)

over On for any permutation σ of the elements {i1, i2, . . . , in}.

7.2 Partial and Total Derivatives

We will now see that the partial derivatives provide an effective way of proving the existence and
computing the total derivatives of a function f : On → Rm. In this lecture and the next, we will
develop the relations between partial and total derivatives by a series of results.
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Definition 7.2.1 ▶ Jacobian Matrix

For a function f = (f1, f2, . . . , fm) : On → Rm, if all the partial derivatives ∂fi
∂xj

at a ∈ On,

we define the Jacobian of the function at a by the m× n matrix,

Jf (a) =

(
∂fi
∂xj

(a)

)
m×n

Theorem 7.2.1

Consider a function f = (f1, f2, . . . , fm) : On → Rm differentiable at a ∈ On. Then all the
partial derivatives ∂fi

∂xj
exist at a. In particular, for f differentiable at a, we have,

(Df)(a) = Jf (a) =

(
∂fi
∂xj

(a)

)
m×n

Proof. Without loss of generality, we take m = 1, and let a = (a1, a2, . . . , an). Fix an arbitrary index
i ∈ {1, 2, . . . , n}. We define ηi : [ai − ϵ, ai + ϵ] → Rn, defined by

ηi(t) = (a1, . . . , ai−1, t, at+1, . . . , an) = a+ (t− ai)ei

As On is open and ηi is continuous, we can find ϵ small such that f([[ai − ϵ, ai + ϵ]]) ⊆ On ⊆ Rn.
Evidently, ηi is differentiable and (Dηi) = [0, . . . , 1, . . . , 0]t = eti over [ai − ϵ, ai + ϵ]. Now, by the
definition of partial derivatives, D(f ◦ ηi)(ai) = fxi

(a).
Again, by chain rule, as f is differentiable at a, D(f ◦ ηi)(ai) = fxi

(a) exists, and

D(f ◦ ηi)(ai) = Df(ηi(ai)) ·Dηi(ai)

=⇒ fxi(a) = Df(a) · eti = [Df(a)]i

As the index i was arbitrary to begin with, this completes the proof.

This theorem proves that differentiability of a function implies the existence of its partial derivatives,
and gives the form of the derivative in the standard basis. But it is often quite elaborate and laborious
to prove that a function is differentiable, whereas computation of the partial derivatives is much
more straightforward. In the next lecture, we formulate a sufficient condition for differentiability of a
function based on its partial derivatives.
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