Lecture 7

7.1 Schwarz Theorem

In the previous lecture, we discussed the notion of partial derivatives. In general, the partial
derivatives depend on the order of differentiation. However, using Clairaut’s Theorem, we found a
necessary when f,, = fy.. Now, we conclude that discussion by the following result.

Theorem 7.1.1 (Schwarz)

Let (a,b) € Oz and f : O3 — R. Suppose f5, fy, and fy, exist on Oq. If f;, is continuous at
(@, b), then f,, exists in a neighbourbood of (a,b) and f,,(a,b) = fyz(a,b).

Proof. Just as before, we take (a,b) = (0,0). From the proof of Clairaut’s Theorem, we have
F(h,k) = fazy(ci,c2) for some 0 < ¢1 < h and 0 < ¢2 < k. By continuity of f, at (0,0), for any
€ > 0 there exists he, ke > 0, such that

But then | F(h, k) — f24(0,0) |[< e V (u,v) € [0, he] x [0, k], that is, F' is continuous at (0,0) with
limit f,,(0,0) at (0,0).

As f,(h,0) exists for h sufficiently small, limy_,o F'(h, k) exists for h sufficiently small. Thus, by
continuity of F' at (0,0),

lim lim F'(h, k) exists and is equal to  lim  F(h, k)
h—0 k—0 (h,k)—(0,0)

Thus, fy2(0,0) exists and is equal to f,(0,0) O

This is a slightly more useful version of Clairaut’s Theorem. However, in many applications (say,
partial differential equations), we work with C? or even C*° functions, in which case both of these
hold automatically.

Exercise: Formulate and prove a similar result for higher order derivatives. In particular, provide a
sufficient condition for f : O, — R so that

of B onf
0x;, 0%, ... 0%, N 05(i,)0T g (iy) - - - OT (i)

over O, for any permutation o of the elements {i,is,... 45}

7.2 Partial and Total Derivatives

We will now see that the partial derivatives provide an effective way of proving the existence and
computing the total derivatives of a function f : O, — R™. In this lecture and the next, we will
develop the relations between partial and total derivatives by a series of results.



A Definition 7.2.1 » Jacobian Matrix |
For a function f = (f1, fa,..., fm) : On — R™, if all the partial derivatives gg at a € Oy,

we define the Jacobian of the function at a by the m x n matrix,

) = (2 (“))m

Theorem 7.2.1
Consider a function f = (f1, fa,..., fm) : On — R™ differentiable at a € O,,. Then all the

partial derivatives % exist at a. In particular, for f differentiable at a, we have,
J

(Df)(a) = Jg(a) = (gf: (“)>mxn

Proof. Without loss of generality, we take m = 1, and let @ = (a1, as,...,a,). Fix an arbitrary index
i€{1,2,...,n}. We define n; : [a; — €, a; + €] = R", defined by

ni(t) = (a1,...,a4;—1,t,ae41, ..., an) = a+ (t —a;)e;

As O, is open and 7; is continuous, we can find € small such that f([[a; — €,a; + €]]) € O, C R™
Evidently, n; is differentiable and (Dn;) = [0,...,1,...,0]* = e! over [a; — €,a; + €]. Now, by the
definition of partial derivatives, D(f o n;)(a;) = fa,(a).

Again, by chain rule, as f is differentiable at a, D(f o n;)(a;) = f.,(a) exists, and

D(f on;i)(ai) = Df(ni(ai)) - Dni(a;)
— fu,(a) = Df(a)- e = [Df(a)l;

As the index ¢ was arbitrary to begin with, this completes the proof. O

This theorem proves that differentiability of a function implies the existence of its partial derivatives,
and gives the form of the derivative in the standard basis. But it is often quite elaborate and laborious
to prove that a function is differentiable, whereas computation of the partial derivatives is much
more straightforward. In the next lecture, we formulate a sufficient condition for differentiability of a
function based on its partial derivatives.



	Lecture 7
	Schwarz Theorem
	Partial and Total Derivatives


