
Lecture 8

8.1 A kind of converse of Theorem 7.2.1

As we have seen in previous lecture, the differentiability of a function gives an explicit expression
for derivative with the existence of partials. In this lecture, we will prove a sufficient condition for
differentiability based on its partials, which will be our final reduction for derivatives.

Theorem 8.1.1 (Final Reduction)

Let f : On → Rm and a ∈ On. Suppose, all partial derivatives ∂fi
∂xj

exists on On and

continuous at a ∈ On. Then,

Df(a) = Jf (a) =

(
∂fi
∂xj

(a)

)
m×n

Proof. Without loss of generality, we take a = (0, . . . , 0) ∈ On and m = 1.

Let’s do some back calculation: We already “know”,

L = Jf (a) =
(
fx1(0) · · · fxn(0)

)
and Lh =

n∑
i=1

hi
∂f

∂xi
(0) ∀ h ∈ Rn

which we use in the following claim,

Claim

1

∥h∥
|f(h)− f(0)− Lh| → 0 as h → 0

Proof. Simply calculating,

1

∥h∥
|f(h)− f(0)− Lh| = 1

∥h∥

∣∣∣∣∣f(h)− f(0)−
n∑

i=1

hi
∂f

∂xi
(0)

∣∣∣∣∣
For every i, we define, ĥi = (h1, . . . , hi, 0, . . . , 0︸ ︷︷ ︸

n−r

) and ĥ0 = 0. Then,

f(h)− f(0) =
(
f(ĥ1)− f(ĥ0)

)
+
(
f(ĥ2)− f(ĥ1)

)
+ · · ·+

(
f(ĥn)− f(ĥn−1)

)
=

n∑
i=1

(
f(ĥi)− f(ĥi−1)

)

1



2

which implies,∣∣∣∣∣f(h)− f(0)−
n∑

i=1

hi
∂f

∂xi
(0)

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(
f(ĥi)− f(ĥi−1)− hi

∂f

∂xi
(0)

)∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
n∑

i=1

hi
∂f

∂xi

(
ĥi−1 + ciei

)
︸ ︷︷ ︸

By MVT, as explained below

− hi
∂f

∂xi
(0)

∣∣∣∣∣∣∣∣
For a fixed h, we fix i ∈ [n]. And we consider the map, ηi : (hi − ϵ, hi + ϵ) → R

t ĥi−1 + tei f(ĥi−1 + tei)

ηi

defined by, ηi(t) = f(ĥi−1 + tei). Clearly, ηi is differentiable on (0, hi) and continuous on [0, hi].
Then, by Mean Value Theorem,

ηi(hi)︸ ︷︷ ︸
f(ĥi)

− ηi(0)︸ ︷︷ ︸
f(ĥi−1)

= η′i(ci)hi = fxi
(ĥi−1 + ciei)hi (for some ci ∈ (0, hi))

Now, observe that, as h → 0, ĥi−1 + ciei → 0 which in turn implies, fxi(ĥi−1 + ciei) → fxi(0).
Therefore,

1

∥h∥
|f(h)− f(0)− Lh| = 1

∥h∥

∣∣∣∣∣
n∑

i=1

hi
∂f

∂xi

(
ĥi−1 + ciei

)
− hi

∂f

∂xi
(0)

∣∣∣∣∣
≤ 1

∥h∥

n∑
i=1

|hi|
∣∣∣∣ ∂f∂xi

(
ĥi−1 + ciei

)
− ∂f

∂xi
(0)

∣∣∣∣ (Triangle inequality)

≤
n∑

i=1

∣∣∣∣ ∂f∂xi

(
ĥi−1 + ciei

)
− ∂f

∂xi
(0)

∣∣∣∣ (as ∥h∥ ≥ |hi| ∀ i)

−→ 0 as h → 0

And, this completes the proof.

With Theorem 8.1.1, computation of derivative is much easier when we are in favorable situation.
Note that,

(i) If f is differentiable at a then ∂fi
∂xj

(a) exists for all i, j and Df(a) = Jf (a).

(ii) If ∂fi
∂xj

is continuous at a then f is differentiable and Df(a) = Jf (a).

The gap between (i) and (ii) is the continuity of partials, which is removable.

8.2 Examples

We conclude the lecture with some instructive examples.
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Example 8.2.1 (Differentiable but discontinuous)

Take,

f(x, y) =


(
x2 + y2

)
sin

(
1√

x2+y2

)
, (x, y) ̸= 0

0, (x, y) = 0

Then,

|f(x, y)− f(0, 0)| =
∣∣x2 + y2

∣∣∣∣∣∣∣sin
(

1√
x2 + y2

)∣∣∣∣∣
≤ (x2 + y2) = ∥(x, y)∥2

implies that f is continuous at (0, 0). For all (x, y) ̸= (0, 0), the partials of f ,

fx(x, y) = 2x sin

(
1√

x2 + y2

)
− x√

x2 + y2
cos

(
1√

x2 + y2

)

fy(x, y) = 2y sin

(
1√

x2 + y2

)
− y√

x2 + y2
cos

(
1√

x2 + y2

)

And at (0, 0),

fx(0, 0) = lim
t→0

f(t, 0)− f(0, 0)

t
= 0

fy(0, 0) = lim
t→0

f(0, t)− f(0, 0)

t
= 0

Also,

1√
h2 + k2

∣∣∣∣f(h, k)− f(0, 0)−
(
0 0

)(h
k

)∣∣∣∣ =√h2 + k2
∣∣∣∣sin( 1√

h2 + h2

)∣∣∣∣ ≤ ∥(h, k)∥

which shows that, f is differentiable at (0, 0) and Df(0, 0) =
(
0 0

)
. But, fx and fy are not

continuous at (0, 0)!

So, even if a function is differentiable at some point, its partials may still not be continuous there!

Example 8.2.2 (Exercise)

Take,

f(x, y) =

{
x

4
3 sin

(
y
x

)
, x ̸= 0

0, x = 0

• Show that,

1. f is differentiable on R2.

2. fx and fy exist and continuous on O2 =
{
(x, y) ∈ R2 : x ̸= 0

}
.

3. fx is not continuous at (0, y) for all y ̸= 0.

• Discuss the nature of continuity of f at the origin.
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Example 8.2.3

Let, f : R3 → R4 be defined by,

f(x, y) = (x+ 2y + 3z, xyz, cosx, sinx)

Then, the at (x, y, z)

Jf (x, y, z) =


1 2 3
yz zx xy

− sinx 0 0
cosx 0 0


which has every entry continuous, thus

Jf (x, y, z) = Df(x, y, z)
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