Lecture 8

8.1 A kind of converse of Theorem 7.2.1

As we have seen in previous lecture, the differentiability of a function gives an explicit expression
for derivative with the existence of partials. In this lecture, we will prove a sufficient condition for
differentiability based on its partials, which will be our final reduction for derivatives.

Theorem 8.1.1 (Final Reduction)

Let f: O, — R™ and a € O,,. Suppose, all partial derivatives %ﬂ% exists on O,, and
continuous at a € O,,. Then,

Df(a) = Jg(a) = (gj; (C‘))mxn

Proof. Without loss of generality, we take a = (0,...,0) € O,, and m = 1.

Let’s do some back calculation: We already “know”,

L=Js(a)= (le(()) fxn(O)) and Lh:Zhigxf' (0) VheR"”
i=1 v

which we use in the following claim,
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|f(h) — f(0)—Lh| - 0as h—0

Proof. Simply calculating,

! )t = L - po) S m 2
Ty (1) = £(0) = Ll = g \f () = £(0) ;hzaxi(m

For every i, we define, h; = (h1,...,hi,0,...,0) and ho = 0. Then,

F(h) = £0) = (F(hn) = f(ho)) + (F(h2) = ()} + -+ (£(hn) = f(hn-1))

> (£(h) = fhiy)

=1

N—



which implies,

f(h) — f(0) - ;hzgi 0)| = ; (f(ili) — f(hi—1) - hzgi (0))‘
= Z hi aa;: (ili—l +Ci€i) — hlgfl.],‘i (0)

By MVT, as explained below

For a fixed h, we fix i € [n]. And we consider the map, n; : (h; — €, h; +€) = R

Ni
t \theizf(ﬁi—l + telv)

defined by, n;(t) = f(fzi_l + te;). Clearly, n; is differentiable on (0, h;) and continuous on [0, h;].
Then, by Mean Value Theorem,

ni(hi) — 1:(0) =ni(c;)h; = fxi(;Li,1 + cieq)h; (for some ¢; € (0, h;))
—~ =~
f(hi) fhiz1)

Now, observe that, as h — 0,h;_1 + ¢c;e; — 0 which in turn implies, fmi(fli,l + cie;) = fz,(0).
Therefore,

! LN~ 9f of
o () = fO) = Lh| = o | ) hi= (hioy +cie | — Ty 0
T 1 () = £(0) = Lhl = o g (,m( 1+ cies) S (0
1 & of /-« 9 ' ' .
< m 1:21 |hi] 87:51 (hifl + ciei) — ai; (O)‘ (Triangle inequality)
~|af (; af |
< ; oz, (hiq + Ciei) " o, (0)‘ (as ||h]| > |hs| V1)
—0ash—0
O
And, this completes the proof. 0

With Theorem 8.1.1, computation of derivative is much easier when we are in favorable situation.
Note that,

(i) If f is differentiable at a then gg (a) exists for all 4, j and Df(a) = J¢(a).

(i) If gﬁ; is continuous at @ then f is differentiable and Df(a) = Js(a).

The gap between (i) and (ii) is the continuity of partials, which is removable.

8.2 Examples

We conclude the lecture with some instructive examples.
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Example 8.2.1 (Differentiable but discontinuous)

Take,
flz,y) = (2% + y?) sin (\/9#’/2)7 (z,y) #0
0, (x,y) =0
Then,
. 1

< (2 + ) = |(z,y)l”

implies that f is continuous at (0,0). For all (z,y) # (0,0), the partials of f,

1 1
fo(z,y) = 2xsin - * cos | ——
VaZ 12 Va2 + 12 /22 1 42

. 1 Y 1
T,y) = 2ysin — cos | ——
fule.w) =2y (x/x2+y2> Va2 +y? <\/x2+y2>

And at (0,0),
f(0,0) = }%w o
£,(0.0) = tim TN =TO0 g
Also,
1 h . 1
Tl =100 -0 0 ()] = Vi (g )| <o

which shows that, f is differentiable at (0,0) and Df(0,0) = (O 0). But, f, and f, are not
continuous at (0,0)!

So, even if a function is differentiable at some point, its partials may still not be continuous there!
Example 8.2.2 (Exercise)
Take,

23 sin (4), =z#0

x

f(x?y):{o, =0

e Show that,

1. f is differentiable on R2.
2. f, and f, exist and continuous on Oy = {(z,y) € R? : z # 0}.
3. fz is not continuous at (0,y) for all y # 0.

e Discuss the nature of continuity of f at the origin.



Example 8.2.3
Let, f : R® — R* be defined by,
flx,y) = (x 4+ 2y + 32, xyz, cos x, sin )

Then, the at (z,y, 2)

1 2 3
Yz zr Ty
@y, 2) = —sinz 0 0

cosz O 0

which has every entry continuous, thus

Jf(x,y,z) = Df(m,y7z)
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