
Lecture 10

Example 10.0.1 (Exercise)

Take the function f : R2 → R defined as,

f(x, y) =

{
x3y

x2+y2 (x, y) ̸= (0, 0)

0 (x, y) = (0, 0)

(i) Prove that, f is continuous at (0, 0).

(ii) Find (Duf)(0, 0) ∀ u.

(iii) Prove that, f is not differentiable.

10.1 Extension of MVT to Several Variables

In Analysis I, you learned about the Mean Value Theorem (MVT) for functions of a single variable.
Now, we extend this concept to several variables in the context of multivariable calculus.

Theorem 10.1.1 (Multivariate MVT)

Let On ⊆ Rn be an open and convex set, and let f : On → R be a differentiable function. For
any two points a, b ∈ On define the line segment

La,b := {tb+ (1− t)a : t ∈ [0, 1]}

Then, there exists a point c ∈ La,b such that,

f(b)− f(a) = (∇f)(c) · (b− a) = ⟨fx1
(c), . . . , fxn

(c)⟩ · ⟨(b1 − a1), . . . , (bn − an)⟩

Proof. We consider the function η : [0, 1] → On

[0, 1] On Rη f

f◦η

defined by η(t) = (1− t)a+ tb. This function is differentiable, and its derivative is

η′(t) =

b1 − a1
...

bn − an


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By applying the standard Mean Value Theorem to the composition f ◦ η, there exists t0 ∈ (0, 1) such
that,

f(η(1))− f(η(0)) = (f ◦ η)′(t0) = Df(η(t0)) ·Dη(t0)

Expanding the dot product, we have,

f(b)− f(a) =
(
fx1

(η(t0)) fx2
(η(t0)) · · · fxn

(η(t0))
)

b1 − a1
b2 − a2

...
bn − an


Simplifying further, we obtain,

f(b)− f(a) = ⟨fx1
(η(t0)), · · · , fxn

(η(t0))⟩ · ⟨(b1 − a1), · · · , (bn − an)⟩

This expression can be rewritten as,

f(b)− f(a) = (∇f)(η(t0)) · (b− a)

Hence, there exists c = η(t0) ∈ La,b such that f(b)− f(a) = (∇f)(c) · (b− a).

10.2 More Partials and Chain Rules

In this section, we further explore the chain rule for differentiable functions of several variables.
Consider two functions f and g as following,

On Om Rpf g

Assuming that f is differentiable at a ∈ On and g is differentiable at b = f(a) ∈ Om the chain rule
states that the derivative of the composite function g ◦ f is given by,

D(g ◦ f)(a)︸ ︷︷ ︸
Rn→Rp

= (Dg)(f(a)) · (Df)(a)

= Dg(b)︸ ︷︷ ︸
Rm→Rp

· Df(a)︸ ︷︷ ︸
Rn→Rm

This can be expressed in matrix form as,

Jg◦f (a)p×n = Jg(f(a))p×m · Jf (a)m×n (10.1)

Moreover, if we consider the function components in each individual coordinates as

• g ◦ f = ((g ◦ f)1, (g ◦ f)2, . . . , (g ◦ f)p)

• g = (g1, g2, . . . , gp)

• f = (f1, f2, . . . , fm).

Then, the (i, j)th entry of both sides of (10.1) would become,

∂(g ◦ f)i
∂xj

(a) =
(

∂gi
∂y1

(f(a)) ∂gi
∂y2

(f(a)) · · · ∂gi
∂ym

(f(a))
)


∂f1
∂xj

(a)
∂f2
∂xj

(a)
...

∂fm
∂xj

(a)


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which is our familiar chain rule for partial derivatives,

∂ (g ◦ f)i
∂xj

(a) =

m∑
k=1

∂gi
∂yk

(b) · ∂fk
∂xj

(a)

where, b = f(a).

Furthermore, if we define yk = fk (x1, x2, . . . , xn) and zi = gi (y1, y2, . . . , ym) we can express the
chain rule for partial derivatives as,

∂zi
∂xj

(x) =

m∑
k=1

∂zi
∂yk

(y) · ∂yk
∂xj

(x)

Remark. In addition, the chain rule can be applied in the context of a composition map with respect
to a parameter t. For functions f : On → R, η : O1 → On and z = f ◦ η as shown below,

O1 On R

t (x1(t), . . . , xn(t)) f (x1(t), . . . , xn(t))

η f

η f

z=f◦η

the chain rule states,

dz

dt
=

n∑
k=1

∂f

∂xk
· dxk

dt

If we treat f as a function of t, the same can be written as,

df

dt
=

n∑
k=1

∂f

∂xk
· dxk

dt
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