
Lecture 11

11.1 Chain Rule

We will begin by recalling some results from the previous lecture.

On Om Rp
f g

g◦f

If we are given two differentiable function f : On → Om and g : Om → Rp, then g ◦ f is also
differentiable. We also derived how to compute Dg◦f by chain rule as following,

Dg◦f (a) = Dg(f(a)).Df (a)

Now, comparing the (i, j)th element, we get,

∂(g ◦ f)i(a)
∂xj

=

m∑
k=1

∂gi(b)

∂yk
· ∂fk(a)

∂xj

where b = f(a). This can be rewritten in a slightly more suggestive form by introducing new variables,

yk = fk(x1, . . . , xn)

zi = gi(y1, . . . , ym)

Then, since (g ◦ f)i = gi ◦ f , the equation above can be written as,

∂zi
∂xj

=

m∑
k=1

∂zi
∂yk

· ∂yk
∂xj

This form of the chain rule is reminiscent of the one-variable chain rule.

Example 11.1.1

Let, f(x, y, z) = xy2z and x = t, y = et, z = 1 + t, we want to calculate df
dt in two ways.

First, we can write f as a function of t,

f(x, y, z) = t(et)2(1 + t)

= (t+ t2)e2t

Hence, we have,

df

dt
=

d

dt

(
t+ t2

)
e2t

= (1 + 2t)e2t + 2(t+ t2)e2t
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= (2t2 + 4t+ 1)e2t

Alternatively, if we apply the chain rule, we obtain,

df

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt

= y2z · 1 + 2xyz · et + xy2 · 1
= e2t(1 + t) + 2t(1 + t)et.et + te2t

= e2t(1 + t+ 2t+ 2t2 + t)

= (2t2 + 4t+ 1)e2t

As we can see, both methods yield the same result!

11.2 Laplacian

The Laplacian operator plays a fundamental role in analyzing the behavior of functions and fields in
multidimensional spaces. It quantifies the overall rate of change and spatial variations of a function,
providing valuable insights into its properties and behavior.

Definition 11.2.1 ▶ Laplacian

f : On → R be a function. Then the Laplacian of f is defined as,

∆f =

n∑
i=1

∂2f

∂x2
i

Observe that,

∆f =

n∑
i=1

∂2f

∂x2
i

=

〈
∂

∂x1
, . . . ,

∂

∂xn

〉
.

〈
∂f

∂x1
, . . . ,

∂f

∂xn

〉
= ∇ ·∇f

Hence, Laplacian can be written as, ∆f = ∇ ·∇f = ∇2f .

Laplacian in Polar Coordinate

Let, f be a twice differentiable function f : R2 → R. We can express f(x, y) in polar coordinates as
a function of (r, θ) by substituting, x = r cos θ and y = r sin θ. Now, observe the following partial
derivatives,

∂x

∂r
= cos θ,

∂x

∂θ
= −r sin θ

∂y

∂r
= sin θ,

∂y

∂θ
= r cos θ

We want to express fxx and fyy in terms of partial derivatives of f in polar coordinates. Notice that,

∂f

∂r
=

∂f

∂x

∂x

∂r
+

∂f

∂y

∂y

∂r
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i.e.,
∂f

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ

Differentiating once more with respect to r, we have,

∂2f

∂r2
=

∂

∂r

[
∂f

∂x
cos θ +

∂f

∂y
sin θ

]
= cos θ

[
∂

∂r

∂f

∂x

]
+ sin θ

[
∂

∂r

∂f

∂y

]
= cos θ

[
∂2f

∂x2

∂x

∂r
+

∂2f

∂y∂x

∂y

∂r

]
+ sin θ

[
∂2f

∂x∂y

∂x

∂r
+

∂2f

∂y2
∂y

∂r

]
= cos θ

[
∂2f

∂x2
cos θ +

∂2f

∂y∂x
sin θ

]
+ sin θ

[
∂2f

∂x∂y
cos θ +

∂2f

∂y2
sin θ

]
= cos θ [cos θfxx + sin θfxy] + sin θ [cos θfxy + sin θfy]

Hence, we get,

∂2f

∂r2
= cos2 θfxx + sin2 θfy + sin 2θfxy

Similarly, we can find the expression for ∂2f
∂θ2 ,

∂2f

∂θ2
= −r (cos θfx + sin θfy) +

(
r2 sin2 θfxx + r2 cos2 θfy − r2 sin 2θfxy

)
Combining the above two result we can write,

∆f = fxx + fyy =
∂2f

∂r2
+

1

r
· ∂f
∂r

+
1

r2
· ∂

2f

∂θ2

Example 11.2.1 (Writing Laplacian in New coordinate)

Let, z = z(u, v) where,
u(x, y) = x2y and v(x, y) = 3x+ 2y

We want to express the Laplacian with respect to u and v. Starting with the given coordinates,

∂u

∂x
= 2xy,

∂u

∂y
= x2

∂v

∂x
= 3,

∂v

∂y
= 2

We can find ∂z
∂x using the chain rule,

∂z

∂x
=

∂z

∂u

∂u

∂x
+

∂z

∂v

∂v

∂x

=⇒ ∂z

∂x
= 2xy

∂z

∂u
+ 3

∂z

∂v

Differentiating once more with respect to x, we have,

∂2z

∂x2
=

∂

∂x

[
2xy

∂z

∂u
+ 3

∂z

∂v

]
= 2y

∂z

∂u
+ 2xy

∂

∂x

[
∂z

∂u

]
+ 3

∂

∂x

[
∂z

∂v

]
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= 2y
∂z

∂u
+ 2xy

(
∂

∂u

[
∂z

∂u

]
∂u

∂x
+

∂

∂v

[
∂z

∂u

]
∂v

∂x

)
+ 3

(
∂

∂u

[
∂z

∂v

]
∂u

∂x
+

∂

∂v

[
∂z

∂v

]
∂v

∂x

)
= 2y

∂z

∂u
+ 2xy

(
∂2z

∂u2

∂u

∂x
+

∂2z

∂v∂u

∂v

∂x

)
+ 3

(
∂2z

∂u∂v

∂u

∂x
+

∂2z

∂v2
∂v

∂x

)
= 2y

∂z

∂u
+ 2xy

(
2xy

∂2z

∂u2
+ 3

∂2z

∂v∂u

)
+ 3

(
1

2xy
· ∂2z

∂u∂v
+ 3

∂2z

∂v2

)
Hence, we get,

∂2z

∂x2
= 2yzu + 4x2y2zuu + 6xyzuv + 6xyzvu + 9zvv

Exercise. Find zyy, zyx, zxy and check if zxy = zyx.

11.3 Extrema of a function

Finding the extrema of a function is crucial in calculus, allowing us to identify maximum and minimum
points and to relate the structure of functions. We will now extend this concept to functions of
several variables.

Definition 11.3.1 ▶ Extrema

Let, a is an interior point of S ⊆ Rn and f : S → R be a function.

• f attains a local maximum at a if there exists an open neighborhood On of a such
that, f(a) ≥ f(x) ∀ x ∈ On.

• Similarly, f attains a local minimum at a if there exists an open neighborhood On of
a such that, f(a) ≤ f(x) ∀ x ∈ On.

Any point at which f attains a local(global) maxima (or minima) is called extremum point of
that function. In plural, it is called Extrema.

Definition 11.3.2 ▶ Critical Point or Stationary Point

Let, f : S(⊆ Rn) → R be a function and a ∈ On ⊆ S. We say that a is a critical point or
stationary point. If

(∇f) (a) = 0

Or, equivalently all the partial derivatives ∂f
∂xi

are zero.

Theorem 11.3.1

Let, f : On → R is differentiable at a ∈ On. If a is a local extremum, then

(∇f) (a) = 0

Proof. Fix i ∈ {1, 2, . . . , n}. We want to show ∂f
∂xi

= 0. For this set, ϕi : (ai − ϵ, ai + ϵ) → R defined
by

ϕi(t) = f(a1, . . . , ai−1, t, ai+1, . . . , an)

Notice that, dϕi

dt = fxi
(a). Since a is local extremum of f , we can say that ai is a local extremum of

ϕi. So,
dϕi

dt = 0, which means, ∂f(a)
∂xi

= 0. We can do this for all i and hence, (∇f)(a) = 0.
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Question. When we did calculation for local extremum for the functions f with one variable, we
used to evaluate the stationary points by calculating, f ′(x) = 0. Then we used to check the second
derivative in order to know whether the stationary point is local minima or maxima or saddle point.
For multivariate case also, we need 2nd order derivative to know the behavior of the stationary point.
Now what could be 2nd order total derivative?

Answer. For this purpose we will introduce Hessian Matrix in next class.
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