
Lecture 12

12.1 Hessian Matrix

We start by defining Hessian matrix, which is a natural extension of the concept of the second
derivative in higher dimensions, allowing us to analyze the rate of change and curvature of a function
in multiple directions simultaneously.

Definition 12.1.1 ▶ Hessian

Suppose f : On → R is C2 at a ∈ On. The Hessian of f at a is defined as the matrix,

Hf (a) =

(
∂2f

∂xi∂xj
(a)

)
n×n

In explicit notation, it has the following form,
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
It is important to note that for any function f that is twice continuously differentiable (f ∈ C2), its
Hessian matrix Hf is symmetric, meaning that Hf = Hf

t.

Example 12.1.1

Let, f : R2 → R be a function defined by f(x, y) = sin2 x+ x2y + y2. Then,

Df =
(
sin 2x+ 2xy x2 + 2y

)
: R2 → R is linear.

The gradient is given by,
∇f =

〈
sin 2x+ 2xy, x2 + 2y

〉
∈ R2

And the Hessian matrix Hf is,

Hf =

(
fxx fxy
fxy fyy

)
=

(
2(cos 2x+ y) 2x

2x 2

) [
∵ f ∈ C2

]
Now let’s introduce some notation. Given A = (aij)n×n ∈ Mn(R) and x ∈ Rn we denote QA(x)
by,

QA(x) = xtAx = ⟨Ax, x⟩Rn
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2

=
(
x1 x2 · · · xn

)

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
a31 a32 · · · a3n



x1

x2

...
xn


=

n∑
i=1

n∑
j=1

aijxixj

Definition 12.1.2 ▶ Quadratic Form

A function f : Rn → R is called a Quadratic Form if it can be expressed as f(x) = QA(x)
for all x and for some symmetric A ∈ Mn(R)

It is important to note that a Quadratic Form represents a homogeneous polynomial of degree 2.
For instance, in the case of a bivariate polynomial p(x, y) = a11x

2 + a22y
2 + a12xy, the matrix

A =

(
a11

1
2a12

1
2a12 a22

)
corresponds to the quadratic form p(x, y) = QA(x, y), capturing the essential quadratic behavior of p.

12.2 Positive Definite, Negative Definite, Semi Definite Matrices

Definition 12.2.1 ▶ Positive Definite, Negative Definite, Semi Definite

• A symmetric matrix A ∈ Mn(R) is called Positive Definite if

⟨Ax, x⟩ > 0 ∀ x ∈ Rn \ {0}

• A symmetric matrix A ∈ Mn(R) is called Negative Definite if

⟨Ax, x⟩ < 0 ∀ x ∈ Rn \ {0}

• A symmetric matrix A ∈ Mn(R) is called Semi Definite if

⟨Ax, x⟩ ≥ 0 ∀ x ∈ Rn \ {0}

Example 12.2.1

1. In is positive definite because for any vector x ∈ Rn \ {0} the inner product

⟨Inx, x⟩ = ∥x∥2 > 0

is strictly positive.

2. For any matrix A ∈ Mn(R), if there exists a matrix B ∈ Mn(R) such that A = BtB, we can
examine the inner product ⟨Ax, x⟩ for any x ∈ Rn \ {0}.
Let’s compute this inner product

⟨Ax, x⟩ = ⟨BtBx, x⟩
= xtBtBx

= (Bx)t(Bx)

= ∥Bx∥2 for all x ∈ Rn \ {0}.
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Therefore, we conclude that ⟨Ax, x⟩ ≥ 0 for all x ∈ Rn \ {0}.
Moreover, if ⟨Ax, x⟩ = 0, then Bx = 0, which implies that x is in the kernel of B. Conversely,
if A is positive definite, there is no non-zero vector x such that ⟨Ax, x⟩ = 0. This implies
that the columns of B are linearly independent.

In summary, when A can be written as A = BtB for some matrix B, we can conclude that A
is positive semi-definite (and the converse also holds).

3. Consider the matrix

A =

(
1 0
0 −1

)
We can compute the quadratic form associated with A as QA = x2

1 − x2
2.

By examining this expression, we observe that it is the difference between the squares of two
variables. This indicates that the sign of QA can change depending on the values of x1 and
x2. Consequently, the matrix A is considered indefinite.

4. Consider the matrix (
1 0
0 0

)
To determine the definiteness of A, we can compute the quadratic form associated with
A as QA(x) = x2

1 ≥ 0 for all x =
(
x1 x2

)
. This indicates that the matrix A is positive

semi-definite.

Consider a positive definite matrix A. For any non-zero vector h, we have,

⟨Ah, h⟩ = ∥Ah∥∥h∥ cos θ > 0

where θ is the angle between vectors Ah and h. Since the cosine of any angle θ in the interval [0, π/2)
is positive, we can conclude that,

cos θ > 0 =⇒ 0 ≤ θ <
π

2

Thus, for any positive definite matrix A, the angle θ between Ah and h satisfies 0 ≤ θ < π
2 .

It is worth noting that classifying positive definite matrices becomes more challenging for higher
dimensions (n > 2). However, for 2× 2 matrices, we can easily determine it from the next theorem.

Theorem 12.2.1

Let A =

(
a b
b c

)
∈ M2(R) be symmetric. Then,

(i) A is Positive Definite ⇐⇒ a > 0 and ac− b2 > 0

(ii) A is Negative Definite ⇐⇒ a < 0 and ac− b2 > 0

(iii) A is Indefinite ⇐⇒ ac− b2 < 0

Proof. We have ⟨Ah, h⟩ = htAh for any vector h. Now, consider a non-zero vector x = (x1, x2) ∈
R2\{(0, 0)} with x2 ̸= 0. Without loss of generality, we can scale x as x = (x, 1) for some x ∈ R.
Then, we have,

⟨Ax,x⟩ = ax2 + 2bx+ c > 0 ∀ x ∈ R
If x2 = 0, we can choose x =

(
1 0

)
(after scaling). Then, ⟨Ax,x⟩ = a. Therefore, we can summarize

the conditions as follows,

A is Positive Definite
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⇐⇒ a > 0 and ax2 + bx+ c > 0 ∀ x ∈ R
⇐⇒ a > 0 and (2b)2 − 4ac < 0

⇐⇒ a > 0 and ac− b2 > 0

Similarly, we can derive the conditions for negative definite and indefinite matrices as,

A is Negative Definite

⇐⇒ a < 0 and ax2 + bx+ c < 0 ∀ x ∈ R
⇐⇒ a < 0 and (2b)2 − 4ac < 0

⇐⇒ a < 0 and ac− b2 > 0

And finally for indefinite ones,

A is Indefinite

⇐⇒ ax2 + bx+ c < 0 for some x ∈ R
and ax2 + bx+ c > 0 for some x ∈ R

⇐⇒ (2b)2 − 4ac > 0

⇐⇒ ac− b2 < 0

Lemma 12.2.1

Let, a ∈ On, A(x) =

(
a1(x) a2(x)
a2(x) a3(x)

)
. Suppose, A is continuous at a (i.e., ai’s are continuous

at a). Then, A is Positive Definite at a would imply that A is Positive Definite in a
neighborhood of a.

Proof. A(a) is Positive Definite, i.e., a1(a) > 0 and a1(a)a3(a)−a2
2(a) > 0. As a1(x) and a1(x)a3(x)−

a22(x) are polynomial of continuous functions, we can find an ϵ > 0 such that both are positive in
Bϵ(a).
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