Lecture 13

13.1 Taylor's Theorem

Recall, Taylor's theorem for one variable.

Definition 13.1.1 ► Taylor's Polynomial

Let, $f : \mathcal{O}_1 \to \mathbb{R}$ be C^k $(k \in \mathbb{N})$. Then for all h such that $a + h \in \mathcal{O}_1$,

$$p_{a,k}(a+h) = \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!} h^n$$

is called the **Taylor's Polynomial** of f around a.

Question. "Is $f(x) \approx p_{a,k}(x)$, for x close to a"? We have,

$$p_{a,k}(x) = \sum_{n=0}^{k} \frac{f^{(n)}(a)}{n!} (x-a)^{r}$$

Take, $f(x) - p_{a,k}(x) = r_{a,k}(x)$

Theorem 13.1.1 (Taylor's Theorem)

Let $f: \mathcal{O}_1 \to \mathbb{R}$ be C^{k+1} . Then, $f(x) = p_{a,k}(x) + r_{a,k}(x)$ where, $r_{a,k} = \frac{f^{k+1}(c)}{(k+1)!}(x-a)^{k+1}$

for some c in between a and $x \in \mathcal{O}_1$.

We introduce the following notation for the sake of clarity in the multivariate Taylor expansion. Let $\alpha = (\alpha_1, \alpha_2, \cdots, \alpha_n) \in \mathbb{Z}_{\geq 0}^n$, and define

- $|\alpha| = \sum_{i=1}^{n} \alpha_i$
- $\alpha! = \alpha_1! \alpha_2! \cdots \alpha_n!$ (product of coordinate-wise factorials)
- $\partial^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}$ (α^{th} derivative) • $\nabla \cdot h = \sum_{i=1}^n h_i \frac{\partial}{\partial x_i}$

The last definition when iterated gives,

$$(\boldsymbol{\nabla} \cdot h)^m = \sum_{|\alpha|=m} \frac{m!}{\alpha!} h^{\alpha} \partial^{\alpha}$$

Theorem 13.1.2 (Taylor's Theorem in Multivariate Case)

Let, $f: \mathcal{O}_n \to \mathbb{R}$ be a C^{k+1} function and assume \mathcal{O}_n is convex. If $h, a+h \in \mathcal{O}_n$, then

$$f(a+h) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} (\partial^{\alpha} f)(a)h^{\alpha} + r_{a,k}(h)$$

where,

$$r_{a,k}(h) = \sum_{|\alpha|=k+1} \frac{1}{\alpha!} (\partial^{\alpha} f)(a+ch)h^{\alpha} \quad \text{for some } c \in (0,1)$$

Proof. Define, $\eta:[0,1]\to\mathbb{R}$ as $\eta(t)=f(a+th)$

$$t \xrightarrow{\eta} f(a+th)$$

which implies η is a C^{k+1} function around 0.

$$\therefore \eta'(t) = \nabla f(a+th) \cdot h = (\nabla \cdot h)f(a+th)$$

Claim

$$\eta^{(m)}(t) = (\boldsymbol{\nabla} \cdot h)^m f(a+th) \ \forall \ m \in \{0, 1, \dots, k+1\}$$

Proof. The first derivative of η ,

$$\eta'(t) = \nabla f(a+th) \cdot h = \sum_{i=1}^{n} f_{x_i}(a+th)h_i$$

which we use to compute the second derivative,

$$\eta''(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{i=1}^{n} f_{x_i}(a+th)h_i \right)$$
$$= \sum_{i=1}^{n} \frac{\mathrm{d}}{\mathrm{d}t} \left(f_{x_i}(a+th)h_i \right)$$
$$= \sum_{i=1}^{n} h_i \sum_{j=1}^{n} f_{x_i x_j}(a+th)h_j \qquad (\text{Chain rule of partials})$$
$$= \sum_{i,j=1}^{n} h_i h_j f_{x_i x_j}(a+th)$$
$$= (\boldsymbol{\nabla} \cdot h)^2 f(a+th)$$

Proceeding with induction on the order of the derivative, we get $\eta^{(m)}(t) = (\nabla \cdot h)^m f(a+th)$ for all $0 \le m \le k+1$ which is our claim.

By one-variable Taylor's Theorem,

$$\eta(1) = p_{0,k}(1) + r_{0,k}(c) \text{ for some } c \in (0,1)$$
(13.1)

with

$$p_{0,k}(1) = \eta(0) + \frac{\eta'(0)}{1!} + \dots + \frac{\eta^{(k)}(0)}{k!}$$
(13.2)

13.1. TAYLOR'S THEOREM

and

$$r_{0,k}(c) = \frac{\eta^{(k+1)}(c)}{(k+1)!}$$
(13.3)

Substituting $\eta^{(m)}(t)$ in (13.1) we have,

$$f(a+h) = \sum_{|\alpha| \le k} \frac{1}{\alpha!} (\partial^{\alpha} f)(a)h^{\alpha} + r_{a,k}(h)$$

We note that, in particular, if $f: \mathcal{O}_2 \to \mathbb{R}$ is a C^2 function then we have,

$$f(a+h) = f(a) + \nabla f(a) \cdot h + \frac{1}{2}h^{t}H_{f}(a+ch)h$$
(13.4)

where,

$$H_f(a) = \begin{pmatrix} f_{xx}(a) & f_{xy}(a) \\ f_{xy}(a) & f_{yy}(a) \end{pmatrix}$$

and $c \in (0, 1)$.

Theorem 13.1.3 (Extremum)

Let $f: \mathcal{O}_2 \to \mathbb{R}$ be a C^2 function such that Df(a) = 0. We write

$$H_f(a) = \begin{pmatrix} f_{xx}(a) & f_{xy}(a) \\ f_{xy}(a) & f_{yy}(a) \end{pmatrix}$$

Then,

- (i) f(a) is a local maximum if $f_{xx}(a) < 0$ and $\det(H_f(a)) > 0$
- (ii) f(a) is a local minimum if $f_{xx}(a) > 0$ and $\det(H_f(a)) > 0$
- (iii) a is a saddle point if $\det(H_f(a)) < 0$

Proof. As a is an interior point of \mathcal{O}_2 we can get an r > 0 such that $a, a + h \in B_r(a) \subseteq \mathcal{O}_2$. By (13.4),

$$f(a+h) - f(a) = \nabla f(a) \cdot h + \frac{1}{2}h^t H_f(a+ch)h$$

We will prove (ii), other statements can be proved similarly. Our assumptions tell that $H_f(a)$ is positive definite. Hence, by the Lemma 12.2.1, there exist $\epsilon > 0$ such that $H_f(x)$ is positive definite $\forall x \in B_{\epsilon}(a)$. So for every $x \in B_{\epsilon}(a)$ the quadratic form $h^t H_f(x)h > 0$ with $h \neq 0$ which implies f(x) - f(a) > 0 in $B_{\epsilon}(a)$ that means a is a point of local minimum. \Box

Example 13.1.1 (Finding Critical points of a function and their nature)

Find the critical points and discuss the nature of the function

$$f(x,y) = x^3 - 6x^2 - 8y^2$$

Solution. Setting $\nabla f(x,y) = 0$, i.e., $(f_x, f_y)(x,y) = 0$, we get the system of equations

$$3x^2 - 12x = 0$$
 and $-16y = 0$

whose solution set is $\{(0,0), (4,0)\}$ implying that (0,0), (4,0) are critical points. The 2nd derivatives are,

$$f_{xx}(x,y) = 6x - 12, \ f_{yy}(x,y) = -16 \ \text{and} \ f_{xy}(x,y) = 0$$

Now, we compute the determinant of the hessian at these points to tell their nature. For (0,0),

$$\det(H_f(0,0)) = \begin{vmatrix} -12 & 0\\ 0 & -16 \end{vmatrix} > 0 \text{ and } f_{xx}(0,0) = -12 < 0$$

So, f has a local maximum at (0,0). And at (4,0),

$$\det(H_f(4,0)) = \begin{vmatrix} 12 & 0 \\ 0 & -16 \end{vmatrix} < 0$$

which shows that (4,0) is a saddle point.