
Lecture 13

13.1 Taylor’s Theorem

Recall, Taylor’s theorem for one variable.

Definition 13.1.1 ▶ Taylor’s Polynomial

Let, f : O1 → R be Ck (k ∈ N). Then for all h such that a+ h ∈ O1,

pa,k(a+ h) =

k∑
n=0

f (n)(a)

n!
hn

is called the Taylor’s Polynomial of f around a.

Question. “Is f(x) ≈ pa,k(x), for x close to a”?
We have,

pa,k(x) =

k∑
n=0

f (n)(a)

n!
(x− a)n

Take, f(x)− pa,k(x) = ra,k(x)

Theorem 13.1.1 (Taylor’s Theorem)

Let f : O1 → R be Ck+1. Then, f(x) = pa,k(x) + ra,k(x) where,

ra,k =
fk+1(c)

(k + 1)!
(x− a)k+1

for some c in between a and x ∈ O1.

We introduce the following notation for the sake of clarity in the multivariate Taylor expansion. Let
α = (α1, α2, · · · , αn) ∈ Zn

≥0, and define

• |α| =
∑n

i=1 αi

• α! = α1!α2! · · ·αn! (product of coordinate-wise factorials)

• ∂α =
∂|α|

∂x1
α1 · · · ∂xn

αn
(αth derivative)

• ∇ · h =

n∑
i=1

hi
∂

∂xi

The last definition when iterated gives,

(∇ · h)m =
∑

|α|=m

m!

α!
hα∂α
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Theorem 13.1.2 (Taylor’s Theorem in Multivariate Case)

Let, f : On → R be a Ck+1 function and assume On is convex. If h, a+ h ∈ On, then

f(a+ h) =
∑
|α|≤k

1

α!
(∂αf)(a)hα + ra,k(h)

where,

ra,k(h) =
∑

|α|=k+1

1

α!
(∂αf)(a+ ch)hα for some c ∈ (0, 1)

Proof. Define, η : [0, 1] → R as η(t) = f(a+ th)

t a+ th f(a+ th)

η

which implies η is a Ck+1 function around 0.

∴ η′(t) = ∇f(a+ th) · h = (∇ · h)f(a+ th)

Claim

η(m)(t) = (∇ · h)mf(a+ th) ∀ m ∈ {0, 1, . . . , k + 1}

Proof. The first derivative of η,

η′(t) = ∇f(a+ th) · h =

n∑
i=1

fxi(a+ th)hi

which we use to compute the second derivative,

η′′(t) =
d

dt

(
n∑

i=1

fxi
(a+ th)hi

)

=
n∑

i=1

d

dt
(fxi

(a+ th)hi)

=

n∑
i=1

hi

n∑
j=1

fxixj
(a+ th)hj (Chain rule of partials)

=

n∑
i,j=1

hihjfxixj (a+ th)

= (∇ · h)2f(a+ th)

Proceeding with induction on the order of the derivative, we get η(m)(t) = (∇ · h)mf(a+ th) for all
0 ≤ m ≤ k + 1 which is our claim.

By one-variable Taylor’s Theorem,

η(1) = p0,k(1) + r0,k(c) for some c ∈ (0, 1) (13.1)

with

p0,k(1) = η(0) +
η′(0)

1!
+ · · ·+ η(k)(0)

k!
(13.2)
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and

r0,k(c) =
η(k+1)(c)

(k + 1)!
(13.3)

Substituting η(m)(t) in (13.1) we have,

f(a+ h) =
∑
|α|≤k

1

α!
(∂αf)(a)hα + ra,k(h)

We note that, in particular, if f : O2 → R is a C2 function then we have,

f(a+ h) = f(a) +∇f(a) · h+
1

2
htHf (a+ ch)h (13.4)

where,

Hf (a) =

(
fxx(a) fxy(a)
fxy(a) fyy(a)

)
and c ∈ (0, 1).

Theorem 13.1.3 (Extremum)

Let f : O2 → R be a C2 function such that Df(a) = 0. We write

Hf (a) =

(
fxx(a) fxy(a)
fxy(a) fyy(a)

)
Then,

(i) f(a) is a local maximum if fxx(a) < 0 and det(Hf (a)) > 0

(ii) f(a) is a local minimum if fxx(a) > 0 and det(Hf (a)) > 0

(iii) a is a saddle point if det(Hf (a)) < 0

Proof. As a is an interior point of O2 we can get an r > 0 such that a, a + h ∈ Br(a) ⊆ O2. By
(13.4),

f(a+ h)− f(a) = ∇f(a) · h+
1

2
htHf (a+ ch)h

We will prove (ii), other statements can be proved similarly. Our assumptions tell that Hf (a) is
positive definite. Hence, by the Lemma 12.2.1, there exist ϵ > 0 such that Hf (x) is positive definite
∀ x ∈ Bϵ(a). So for every x ∈ Bϵ(a) the quadratic form htHf (x)h > 0 with h ̸= 0 which implies
f(x)− f(a) > 0 in Bϵ(a) that means a is a point of local minimum.

Example 13.1.1 (Finding Critical points of a function and their nature)

Find the critical points and discuss the nature of the function

f(x, y) = x3 − 6x2 − 8y2

Solution. Setting ∇f(x, y) = 0, i.e., (fx, fy)(x, y) = 0, we get the system of equations

3x2 − 12x = 0 and − 16y = 0

whose solution set is {(0, 0), (4, 0)} implying that (0, 0), (4, 0) are critical points.
The 2nd derivatives are,

fxx(x, y) = 6x− 12, fyy(x, y) = −16 and fxy(x, y) = 0
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Now, we compute the determinant of the hessian at these points to tell their nature. For (0, 0),

det(Hf (0, 0)) =

∣∣∣∣−12 0
0 −16

∣∣∣∣ > 0 and fxx(0, 0) = −12 < 0

So, f has a local maximum at (0, 0). And at (4, 0),

det(Hf (4, 0)) =

∣∣∣∣12 0
0 −16

∣∣∣∣ < 0

which shows that (4, 0) is a saddle point. ■
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