Lecture 13

13.1 Taylor's Theorem

Recall, Taylor’s theorem for one variable.

([ Definition 13.1.1 » Taylor's Polynomial } N

Let, f: O; — R be C* (k € N). Then for all h such that a +h € Oy,

ko
f"(a), ,
pa,k(a + h) = Z Th
n=0

is called the Taylor’s Polynomial of f around a.
\_ J
Question. “Is f(z) = pgr(x), for = close to a”?
We have,

por(2) = f: f(’z!(a) (& a)"
n=0
Take, f(x) — po.i(x) = re.x(2)
Theorem 13.1.1 (Taylor's Theorem)
Let f: O — R be C**1. Then, f(z) = pax(®) + 7ax(x) where,
fk+1(c)

_ k+1
fak = k1)

(x —a)

for some c in between a and z € O;.

We introduce the following notation for the sake of clarity in the multivariate Taylor expansion. Let
a= (1,02, ,a,) € Z%,, and define

o al =ajlag! - -a,! (product of coordinate-wise factorials)

¢ 0% = TR (ath derivative)
- 0
V-h= hi —
The last definition when iterated gives,

m m! [aaTe?
(V-h) lz_: —heo

1



Theorem 13.1.2 (Taylor's Theorem in Multivariate Case)

Let, f : O, — R be a C**! function and assume O, is convex. If h,a + h € O, then

flathy= 32 (@ H@h + rou(h)

lor| <k

where,

rak(h) = Z 5(8af)(a + ch)h® for some ¢ € (0,1)
la|=k+1

Proof. Define, n: [0,1] — R as n(t) = f(a+th)

t—— a+th—— f(a+th)

n

which implies 7 is a C**! function around 0.

s (t) = Vf(a+th) h=(V-h)f(a+th)

™ () = (V- h)™f(a+th) ¥ m e {0,1,...,k+1}

Proof. The first derivative of 7,

n'(t) =V fla+th) -h= ifm(a + th)h;

i=1

which we use to compute the second derivative,
n"(t) = 4 if (a+th)h;
dt — xZ; 1
=S L g, at g
P de

= Z hi Z Jeiz,; (@ +th)h; (Chain rule of partials)
=1 j=1

> hihjfom,(a+ th)

ij=1

= (V -h)2f(a+th)

Proceeding with induction on the order of the derivative, we get n("™ (t) = (V « h)™ f(a + th) for all
0 <m < k + 1 which is our claim. OJ

By one-variable Taylor’s Theorem,
(1) = po,x(1) + 701 (c) for some ¢ € (0,1) (13.1)
with

*)(0)
N
1 +--+ k'( (13.2)
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and (k+1)
_ (o)
ro.e(c) = 1) (13.3)
Substituting 7™ (¢) in (13.1) we have,
1 (6% (03
fla+h) =" 107N @h® +7ax(h)
la|<k
O
We note that, in particular, if f: O — R is a C? function then we have,
1
f(a—|—h):f(a)+Vf(a)-h—|—§htHf(a—|—ch)h (13.4)
where,
frz(a)  fo (a))
H¢(a) = Y
= () e
and ¢ € (0,1).

Theorem 13.1.3 (Extremum)
Let f: Oy — R be a C? function such that Df(a) = 0. We write

mw= (70 )

Then,
(i) f(a) is a local maximum if f;,(a) < 0 and det(H¢(a)) >0
(ii) f(a) is a local minimum if f;,(a) > 0 and det(H(a)) > 0
(iii) @ is a saddle point if det(H(a)) < 0

Proof. As a is an interior point of Oy we can get an r > 0 such that a,a + h € B,.(a) C O3. By
(13.4),

fla+h)— f(a) =V f(a) h+ %thf(a + ch)h

We will prove (ii), other statements can be proved similarly. Our assumptions tell that H¢(a) is
positive definite. Hence, by the Lemma 12.2.1, there exist € > 0 such that Hy(z) is positive definite
V x € Be(a). So for every x € Bc(a) the quadratic form h'H¢(z)h > 0 with h # 0 which implies
f(z) = f(a) > 0 in Bc(a) that means a is a point of local minimum. O

Example 13.1.1 (Finding Critical points of a function and their nature)

Find the critical points and discuss the nature of the function
fz,y) = 23 — 622 — 8y?
Solution. Setting V f(z,y) =0, i.e., (fz, fy)(x,y) = 0, we get the system of equations
32 — 12z =0 and — 16y =0

whose solution set is {(0,0), (4,0)} implying that (0,0), (4,0) are critical points.
The 2nd derivatives are,



Now, we compute the determinant of the hessian at these points to tell their nature. For (0, 0),

det(H;(0,0)) = ‘_12 0 ‘ > 0 and f,0(0,0) = —12 < 0

0 -16
So, f has a local maximum at (0,0). And at (4,0),

12 0

det(H((4,0)) = ’ 0 —16

<0

which shows that (4,0) is a saddle point.
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