Lecture 14

14.1 Compact subsets of R"

We start with the definition of Compactness which refers to a property of sets that captures the
notion of being finite or having no “holes”.

Definition 14.1.1 » Compact Subset }

A subset K C R™ is said to be compact if every sequence {z,} C K has a subsequence {z,, }
that is convergent to some = € K.

This is known as the Bolzano-Weierstrass Property.

Observe that a compact subset of R" is always closed. To see this, note that every sequence
{z,} C K, where K is a compact subset of R” that converges to some 2 € R™ has a convergent
subsequence {z,, } that converges to the same x. Since K is compact, we can say that = € K. So,
the convergent sequence {x, } converges to a point in K. Hence, K is closed.

More is true. A compact subset of R™ is bounded too. Assume that a compact subset K C R" is
not bounded. Note that, a subset of R™ is bounded iff it is contained inside an open ball. Since K
is unbounded, we can get a sequence {zp,} C K with ||zy,|| > m, which doesn’t have a convergent
subsequence. This shows that K is not compact that contradicts our assumption.

Therefore, a compact subset of R™ is closed and bounded. What about the converse?

Theorem 14.1.1

A closed and bounded box in R™ is compact.

n
Proof. We take a closed and bounded box K := H[ai, b;] CR"™. Fix i € [n]. Consider a sequence
i=1
{rm} € K. We take its projection on the i*" coordinate, i.e., {m;(zm)} C [ai,b;]. Consider
i = 1, by Bolzano-Weierstrass Theorem, it has a convergent subsequence {m(zm,)} C la1,b1]
converging to ay € [a1,b;]. Now we take ¢ = 2 and repeat the process to get a convergent

subsequence {Wg([ﬂmt’)} C [ag,bs] converging to as € [az,be]. Continuing this way, we get a

convergent subsequence of {z,,} converging to a = (a,...,a,) € K. Hence, K is compact. O

Theorem 14.1.2 (Heine-Borel Theorem)
A subset K C R" is compact iff it is closed and bounded.

Proof. = Done!



<= Since, K is bounded, it is contained in a closed box, i.e., there exists r > 0 such that K C [—r, r]|™.
So, Theorem 14.1.1 implies that all sequences in K has a convergent subsequence, which must
converge in K because K is closed. Hence, K is compact.
O
Theorem 14.1.3

Let f: O, — R™ be a continuous map. Then f sends compact sets to compact sets.

In other words, continuous image of a compact set is compact.

Proof. Let K € O,, be compact. Take a sequence {x;} C K with a convergent subsequence {z, } C K
converging to € K. Then, {f(zx)} is sequence in f(K) with convergent subsequence {f(zm,)}
converging to f(z). The last statement about convergence follows from the continuity of f. This
shows that f(K) is compact. O

Theorem 14.1.4 (Extreme Value Theorem)

Let K C R™ be compact and f : K — R a continuous map. Then 3 a,b € K such that
fla) < f(x) < f(b) for all z € K.

Proof. By Theorem 14.1.3, f(K) is compact. So f is bounded which implies sup f, i%f f exist! Since
K
f(K) is closed, they must exist inside f(K). O

14.2 Inverse Function Theorem

We are now going to study Inverse Function Theorem which relates the differentiability of a function
to the differentiability of its inverse, enabling the study of local behavior and solving equations in
higher dimensions. But before that we prove a lemma that is essential to prove the theorem.

Lemma 14.2.1

Let O,, C R™ be open and convex. Suppose f : O,, — R" be a C* function. If 3 M > 0 such
that

sup
zeO0y

Then ||f(z) — f(y)|| < n®M||z — y|| for every z,y € O,,.

o (x)‘ < M for all 4, j
g

Proof. Pick z,y € O,, and i € [n]. Then using Mean Value Theorem, we can get ¢; € L, ,, such that

fi(x) = fily) = V fi(ci) - (x —y)

n 6 :
= 1) ~ £ = |3 5L () - (@i~ w)
=1 9%
= Z gf (i) {lzi =yl (Triangle inequality)
=1 19%5

The last inequality follows from the inequality |2; — y;| < || — y|| which holds for all i.
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Using the above,

1f(2) = f(W)ll = Zlfz [P < (| Do n2M2 e —yl* < n*Mllz —y|

i=1
we obtain the result. O

Theorem 14.2.1 (Inverse Function Theorem)

Let f: O, — R™ be a C* function and a € O,,. Suppose D f(a) is invertible. Then, there exist
open sets V and W containing a and f (a) respectively, such that f: V — W is invertible.

Moreover, the local inverse f~* = (f|,)”" : W — V is differentiable and for all y € W,

DfY(y) = (DF) (') "

i.e., locally, the derivative of the inverse is the matrix inverse of the derivative.

Proof.
We call L = Df(a) which is given to be invertible and take g(z) :=
~1f(x). Then, ;
N
Dg(a ) L™ (f(a )) ( hla) G @
L' =1
] v W -

As this transformation can be made, without loss of generality, we may

assume that D f(a) = I,, which would imply that there exists a closed Figure 14.1
box U containing a such that for all x € U\ {a}, f(a) # f(z). To see

this, let f(a) = f(a + h) with arbitrarily small ||h||. But then,

1

o Ulat ) = f(a) ~ 1h) =

#0
thl
which contradicts the definition of derivative. Note that det J;(a) # 0. So, by continuity det Jy(z) # 0
for all z € U (we may shrink U if necessary). Hence, D f(x) is invertible for all z € U. Again by
continuity, for all x € U (we may shrink U if necessary),

af af 1
9z, @~ 5y, @[S 3
T

Now we claim the following,

For all z,y € U,

5@ ~ 7)) > gz~

Proof. We take g(x) = f(x) — z for all z € U. Taking derivative, we get

Dg(z) = Df(x) — I = Df(z) — Df(a)
0gi _Of; af;
o ()= got (@) = G2t @)
0g;
ailij

(;15)‘2 5 Vel



Then by Lemma 14.2.1, for all z,y € U,

1
lg(z) - g(u)ll < n2 - 5l — ]

= (f(z) = fy) = (z =yl < %Hfﬂ—yl\

= /(@) = f)l = %Ilw =l (14.1)

Where (14.1) follows from the Triangle inequality. So, we get the claim! It shows that f is injective. [

Next we look at the compact set U C U. Since a € 9U, we can say f(x) # f(a) for all z € 9U. So,
by continuity of f and compactness of OU, we can find a d € R>( such that

1f(z) = fla)| = d VaxedU

maintains a “safe” distance of g

oUu
f(U)

Figure 14.2
Now, we take W = Ba (f(a)). Then, for every y € W and z € 9U,

ly = f@ < [ly = f@] (14.2)

atmost % atleast d

For a fixed y € W, 3 a unique z¢ € U° such that f(z¢) =y

Proof. We define a continuous function g : U — R with

n

g@) = lly = f@)* = (v = fulw))®

i=1

Since, infy; g cannot occur at the boundary OU, but must occur in U, there exists xg € U° such that

.0 .
Vg(zo) =0 1ie., a—i (x9) =0Vj

Now, the partials of g,

69 o 8 i s 2
oz, (z) = o, ; (yi — fi())
— 2 (0~ ) 5 ()

i=1
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At xg, we get,

> (i — filzo)) % (z0) =0 Vj
i=1 J
— (% @) (v~ filzo) =0
N———
Df(zo)*

As Df is invertible in U and xg € U° we obtain y = f(x¢), which shows the existence of zy. The
uniqueness follows from (14.1). O

We now set V := U N f~1(W). Since U is closed, V = U° N f~4(W). Hence, f|, : V — W is
invertible!

fV=(fl,)"": W = V is continuous.

Proof. (14.1) gives,
1
1£(21) = flz2)l 2 Sll21 — 22| V21,20 €V CU

equivalently,
2llyr = yall = || f 7 (1) — f 7 (2)|| (where, y; = f(x;))

which shows that f~! is Lipschitz, hence continuous. O

f~1 is differentiable.

Proof. We fix yg = f(xg) € W for some g € V and take A = D f(xg). As we know,

(/" o+ 1) = f M (yo) — ATh) =0

AT

< lim _; (F W) = wo) — Ay —w0)) =0 (14.3)
v=vo ||y — yoll

We set ¢(h) = f(xo + h) — f(xg) — Ah for h in a neighborhood of 0. Now,

A7 (o + h) — f(0)) = h+ A~ p(h)
= (o +h) —x0) + A~ (#((wo + h) — x0))

Also set y = f(xo + h). Then,

yo) + A7 (o (f () — fH(wo)))
— AT BT = W) = W) = o) — ANy — o) (14.4)

So, it is now enough to prove that,

lim A1 (6 (f 1 (y) — £ (o)) =0

h—0||h|]

. 1 -1 -1 —
= ylgr;om (¢ (f (y)—f (90))) =0



But,
o () = o)l _ 6~ w) = S wo) [ I/~ W) = F 7 o)l _
1y = ol /=1 (y) = f = (wo)ll ly = yoll
0 <2
Hence, the limit (14.3) is true. O

To show that f~! is C!, observe that all the partials of f~! are rational polynomial functions (with
non-zero denominators) of those of f. This completes the proof. O
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