
Lecture 14

14.1 Compact subsets of Rn

We start with the definition of Compactness which refers to a property of sets that captures the
notion of being finite or having no “holes”.

Definition 14.1.1 ▶ Compact Subset

A subset K ⊆ Rn is said to be compact if every sequence {xn} ⊆ K has a subsequence {xnk
}

that is convergent to some x ∈ K.

This is known as the Bolzano-Weierstrass Property.

Observe that a compact subset of Rn is always closed. To see this, note that every sequence
{xn} ⊆ K, where K is a compact subset of Rn that converges to some x ∈ Rn has a convergent
subsequence {xnk

} that converges to the same x. Since K is compact, we can say that x ∈ K. So,
the convergent sequence {xn} converges to a point in K. Hence, K is closed.

More is true. A compact subset of Rn is bounded too. Assume that a compact subset K ⊆ Rn is
not bounded. Note that, a subset of Rn is bounded iff it is contained inside an open ball. Since K
is unbounded, we can get a sequence {xm} ⊆ K with ∥xm∥ > m, which doesn’t have a convergent
subsequence. This shows that K is not compact that contradicts our assumption.

Therefore, a compact subset of Rn is closed and bounded. What about the converse?

Theorem 14.1.1

A closed and bounded box in Rn is compact.

Proof. We take a closed and bounded box K :=

n∏
i=1

[ai, bi] ⊆ Rn. Fix i ∈ [n]. Consider a sequence

{xm} ⊆ K. We take its projection on the ith coordinate, i.e., {πi(xm)} ⊆ [ai, bi]. Consider
i = 1, by Bolzano-Weierstrass Theorem, it has a convergent subsequence {π1(xmt)} ⊆ [a1, b1]
converging to α1 ∈ [a1, b1]. Now we take i = 2 and repeat the process to get a convergent

subsequence
{
π2(xmtl

)
}

⊆ [a2, b2] converging to α2 ∈ [a2, b2]. Continuing this way, we get a

convergent subsequence of {xm} converging to α = (α1, . . . , αn) ∈ K. Hence, K is compact.

Theorem 14.1.2 (Heine-Borel Theorem)

A subset K ⊆ Rn is compact iff it is closed and bounded.

Proof. =⇒ Done!
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⇐= Since, K is bounded, it is contained in a closed box, i.e., there exists r > 0 such thatK ⊆ [−r, r]n.
So, Theorem 14.1.1 implies that all sequences in K has a convergent subsequence, which must
converge in K because K is closed. Hence, K is compact.

Theorem 14.1.3

Let f : On → Rm be a continuous map. Then f sends compact sets to compact sets.

In other words, continuous image of a compact set is compact.

Proof. LetK ∈ On be compact. Take a sequence {xk} ⊆ K with a convergent subsequence {xkt
} ⊆ K

converging to x ∈ K. Then, {f(xk)} is sequence in f(K) with convergent subsequence {f(xmt)}
converging to f(x). The last statement about convergence follows from the continuity of f . This
shows that f(K) is compact.

Theorem 14.1.4 (Extreme Value Theorem)

Let K ⊆ Rn be compact and f : K → R a continuous map. Then ∃ a, b ∈ K such that
f(a) ≤ f(x) ≤ f(b) for all x ∈ K.

Proof. By Theorem 14.1.3, f(K) is compact. So f is bounded which implies sup
K

f, inf
K

f exist! Since

f(K) is closed, they must exist inside f(K).

14.2 Inverse Function Theorem

We are now going to study Inverse Function Theorem which relates the differentiability of a function
to the differentiability of its inverse, enabling the study of local behavior and solving equations in
higher dimensions. But before that we prove a lemma that is essential to prove the theorem.

Lemma 14.2.1

Let On ⊆ Rn be open and convex. Suppose f : On → Rn be a C1 function. If ∃ M > 0 such
that

sup
x∈On

∣∣∣∣ ∂fi∂xj
(x)

∣∣∣∣ ≤ M for all i, j

Then ∥f(x)− f(y)∥ ≤ n2M∥x− y∥ for every x, y ∈ On.

Proof. Pick x, y ∈ On and i ∈ [n]. Then using Mean Value Theorem, we can get ci ∈ Lx,y such that

fi(x)− fi(y) = ∇fi(ci) · (x− y)

=⇒ |fi(x)− fi(y)| =

∣∣∣∣∣∣
n∑

j=1

∂fi
∂xj

(ci) · (xi − yi)

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣ ∂fi∂xj
(ci)

∣∣∣∣|xi − yi| (Triangle inequality)

≤ M

n∑
j=1

|xi − yi| ≤ nM∥x− y∥

The last inequality follows from the inequality |xi − yi| ≤ ∥x− y∥ which holds for all i.
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Using the above,

∥f(x)− f(y)∥ =

√√√√ n∑
i=1

|fi(x)− fi(y)|2 ≤

√√√√ n∑
i=1

n2M2∥x− y∥2 ≤ n2M∥x− y∥

we obtain the result.

Theorem 14.2.1 (Inverse Function Theorem)

Let f : On → Rn be a C1 function and a ∈ On. Suppose Df(a) is invertible. Then, there exist
open sets V and W containing a and f(a) respectively, such that f : V → W is invertible.

Moreover, the local inverse f−1 ≡ (f |
V
)
−1

: W → V is differentiable and for all y ∈ W ,

Df−1(y) =
(
(Df)

(
f−1(y)

))−1

i.e., locally, the derivative of the inverse is the matrix inverse of the derivative.

Proof .

Figure 14.1

We call L = Df(a) which is given to be invertible and take g(x) :=
L−1f(x). Then,

Dg(a) = L−1(f(a)) · (Df)(a)

=
[
L−1

]
·Df(a) = I

As this transformation can be made, without loss of generality, we may
assume that Df(a) = In which would imply that there exists a closed
box U containing a such that for all x ∈ U \ {a}, f(a) ̸= f(x). To see
this, let f(a) = f(a+ h) with arbitrarily small ∥h∥. But then,

1

∥h∥
(f(a+ h)− f(a)− Ih) =

h

∥h∥
̸= 0

which contradicts the definition of derivative. Note that det Jf (a) ̸= 0. So, by continuity det Jf (x) ̸= 0
for all x ∈ U (we may shrink U if necessary). Hence, Df(x) is invertible for all x ∈ U . Again by
continuity, for all x ∈ U (we may shrink U if necessary),∣∣∣∣∣ ∂f∂xj

(x)− ∂f

∂xj
(a)︸ ︷︷ ︸

δij

∣∣∣∣∣ ≤ 1

2n2

Now we claim the following,

Claim

For all x, y ∈ U ,

∥f(x)− f(y)∥ ≥ 1

2
∥x− y∥

Proof. We take g(x) = f(x)− x for all x ∈ U . Taking derivative, we get

Dg(x) = Df(x)− I = Df(x)−Df(a)

=⇒ ∂gi
∂xj

(x) =
∂fi
∂xj

(x)− ∂fi
∂xj

(a)

=⇒
∣∣∣∣ ∂gi∂xj

(x)

∣∣∣∣ ≤ 1

2n2
∀ x ∈ U
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Then by Lemma 14.2.1, for all x, y ∈ U ,

∥g(x)− g(y)∥ ≤ n2 · 1

2n2
∥x− y∥

=⇒ ∥(f(x)− f(y))− (x− y)∥ ≤ 1

2
∥x− y∥

=⇒ ∥f(x)− f(y)∥ ≥ 1

2
∥x− y∥ (14.1)

Where (14.1) follows from the Triangle inequality. So, we get the claim! It shows that f is injective.

Next we look at the compact set ∂U ⊆ U . Since a ̸∈ ∂U , we can say f(x) ̸= f(a) for all x ∈ ∂U . So,
by continuity of f and compactness of ∂U , we can find a d ∈ R≥0 such that

∥f(x)− f(a)∥ ≥ d ∀ x ∈ ∂U

Figure 14.2

Now, we take W = B d
2
(f(a)). Then, for every y ∈ W and x ∈ ∂U ,

∥y − f(a)∥︸ ︷︷ ︸
atmost d

2

< ∥y − f(x)∥︸ ︷︷ ︸
atleast d

(14.2)

Claim

For a fixed y ∈ W, ∃ a unique x0 ∈ U◦ such that f(x0) = y

Proof. We define a continuous function g : U → R with

g(x) = ∥y − f(x)∥2 =

n∑
i=1

(yi − fi(x))
2

Since, infU g cannot occur at the boundary ∂U , but must occur in U , there exists x0 ∈ U◦ such that

∇g(x0) = 0 i.e.,
∂g

∂xj
(x0) = 0 ∀j

Now, the partials of g,

∂g

∂xj
(x) =

∂

∂xj

n∑
i=1

(yi − fi(x))
2

= −2

n∑
i=1

(yi − fi(x))
∂fi
∂xj

(x)
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At x0, we get,

n∑
i=1

(yi − fi(x0))
∂fi
∂xj

(x0) = 0 ∀j

=⇒
(

∂fi
∂xj

(x0)
)t

︸ ︷︷ ︸
Df(x0)t

(y − fi(x0)) = 0

As Df is invertible in U and x0 ∈ U◦ we obtain y = f(x0), which shows the existence of x0. The
uniqueness follows from (14.1).

We now set V := U ∩ f−1(W ). Since U is closed, V = U◦ ∩ f−1(W ). Hence, f |
V

: V → W is
invertible!

Claim

f−1 ≡ (f |
V
)
−1

: W → V is continuous.

Proof. (14.1) gives,

∥f(x1)− f(x2)∥ ≥ 1

2
∥x1 − x2∥ ∀ x1, x2 ∈ V ⊆ U

equivalently,

2∥y1 − y2∥ ≥
∥∥f−1(y1)− f−1(y2)

∥∥ (where, yi = f(xi))

which shows that f−1 is Lipschitz, hence continuous.

Claim

f−1 is differentiable.

Proof. We fix y0 = f(x0) ∈ W for some x0 ∈ V and take A = Df(x0). As we know,

lim
h→0

1

∥h∥
(
f−1(y0 + h)− f−1(y0)−A−1h

)
= 0

⇐⇒ lim
y→y0

1

∥y − y0∥
(
f−1(y)− f−1(y0)−A−1(y − y0)

)
= 0 (14.3)

We set ϕ(h) = f(x0 + h)− f(x0)−Ah for h in a neighborhood of 0. Now,

A−1 (f(x0 + h)− f(x0)) = h+A−1ϕ(h)

= ((x0 + h)− x0) +A−1 (ϕ((x0 + h)− x0))

Also set y = f(x0 + h). Then,

A−1(y − y0) = f−1(y)− f−1(y0) +A−1
(
ϕ
(
f−1(y)− f−1(y0)

))
=⇒ −A−1

(
ϕ
(
f−1(y)− f−1(y0)

))
= f−1(y)− f−1(y0)−A−1(y − y0) (14.4)

So, it is now enough to prove that,

lim
h→0

1

∥h∥
A−1

(
ϕ
(
f−1(y)− f−1(y0)

))
= 0

⇐⇒ lim
y→y0

1

∥y − y0∥
(
ϕ
(
f−1(y)− f−1(y0)

))
= 0
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But, ∥∥ϕ (
f−1(y)− f−1(y0)

)∥∥
∥y − y0∥

=

∥∥ϕ (
f−1(y)− f−1(y0)

)∥∥
∥f−1(y)− f−1(y0)∥︸ ︷︷ ︸

0

·
∥∥f−1(y)− f−1(y0)

∥∥
∥y − y0∥︸ ︷︷ ︸

≤2

= 0

Hence, the limit (14.3) is true.

To show that f−1 is C1, observe that all the partials of f−1 are rational polynomial functions (with
non-zero denominators) of those of f . This completes the proof.
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