Lecture 16

16.1 Riemann-Darboux Integration

Definition 16.1.1 \blacktriangleright Volume of a closed/open ball We define the volume of a closed ball $B^n = \prod_{i=1}^n [a_i, b_i]$ as $\operatorname{Vol}(B^n) = \prod_{i=1}^n (b_i - a_i)$. We also define the volume of the open set $O^n = \prod_{i=1}^n (a_i, b_i)$ to be equal to that of B^n , i.e., $\operatorname{Vol}(O^n) = \operatorname{Vol}(B^n)$.

We now introduce some notation. Fix $i \in \{1, 2, ..., n\}$. We define a partition of the i^{th} interval $[a_i, b_i]$ as

$$P_i: a_i = a_{i,0} < a_{i,1} < \dots < a_{i,n_i} = b_i$$

and the intervals of its partition as

$$I_{i,t} = [x_{i,t-1}, x_{i,t}], \forall \ 1 \le t \le n_i$$

and set

$$B_{(t_1,t_2,\ldots,t_n)}^n = B_\alpha = [x_{1,t_1-1}, x_{1,t_1}] \times \cdots \times [x_{n,t_n-1}, x_{n,t_n}] = I_{1,t_1} \times \cdots \times I_{n,t_n}$$

where α is chosen from the indexing set $\Lambda(P) = \{ \alpha = (t_1, \ldots, t_n) \mid 1 \le t_i \le n_i, i = 1, \ldots, n \}.$

Note

1.
$$B^n = \bigcup_{\alpha \in \Lambda(P)} B^n_{\alpha}$$

2. $\operatorname{Vol}(B^n) = \sum_{\alpha \in \Lambda(P)} \operatorname{Vol}(B^n_{\alpha})$

We call $\mathscr{P}(B) = \{P_1 \times \cdots \times P_n \mid P_i \in \mathscr{P}[a_i, b_i]\}$ the set of all partitions of B^n .

Definition 16.1.2
$$\blacktriangleright$$
 Refinement of Partitions
Given $P = \prod_{i=1}^{n} P_i$ and $\tilde{P} = \prod_{i=1}^{n} \tilde{P}_i$ with $P, \tilde{P} \in \mathscr{P}[a, b]$, then \tilde{P} is called a refinement of P if $\tilde{P}_i \supset P_i \ \forall i = 1, 2, ..., n$.

Theorem 16.1.1

Let f be a bounded function over B^n . Let $P, \widetilde{P} \in \mathscr{P}(B^n)$ and $\widetilde{P} \supset P$. Then

$$L(f, P) \le L(f, P) \le U(f, P) \le U(f, P)$$

2

Proof. Note that $L(f, \tilde{P}) \leq U(f, \tilde{P})$ follows directly from the fact that $m_{\alpha}(\tilde{P}) \leq M_{\alpha}(\tilde{P}) \ \forall \tilde{P} \in \mathscr{P}[a, b]$, where $m_{\alpha} = \inf_{B_{\alpha}^{n}} f$ and $M_{\alpha} = \sup_{B_{\alpha}^{n}} f$. \Box

Corollary (Inequality of upper and lower sums)

For all $P, \widetilde{P} \in \mathscr{P}(B^n)$, the following inequality holds.

 $m \times \operatorname{Vol}(B^n) \le L(f, P) \le U(f, \tilde{P}) \le M \times \operatorname{Vol}(B^n)$

We denote $\mathscr{B}(A) = \{f : A \to \mathbb{R} \mid \sup_A |f| < \infty\}$ as the set of all bounded functions over A for any $A \subseteq \mathbb{R}^n$.

Definition 16.1.3 ► Upper and Lower Darboux Integrals

For
$$f \in \mathscr{B}(B^n)$$
, we define

$$\overline{\int}_{B^n} f = \inf_{P \in \mathscr{P}(B^n)} U(f, P) \text{ and } \underline{\int}_{B^n} f = \sup_{P \in \mathscr{P}(B^n)} L(f, P)$$

as the Upper and Lower Darboux Integrals, respectively.

We have $L(f, P) \leq U(f, P')$ for all $P, P' \in \mathscr{P}(B^n)$ by taking the common refinement $\widehat{P} = P \cup P'$. Hence,

$$\underline{\int}_{B^n} f \le \overline{\int}_{B^n} f$$

Definition 16.1.4 ► Darboux Integral

Let $f \in \mathscr{B}(B^n)$. f is said to be Riemann-Darboux Integrable or Riemann Integrable or just Integrable if

$$\underline{\int}_{B^n} f = \overline{\int}_{B^n} f$$

In this case, we introduce the notation,

$$\int_{B^n} f \, \mathrm{d}V = \int_{B^n} f(x_1, \dots, x_n) \, \mathrm{d}x_1 \cdots \mathrm{d}x_n = \underbrace{\int}_{B^n} f = \overline{\int}_{B^n} f$$

At this point, the notation $\int_{B^n} f(x_1, \dots, x_n) dx_1 \cdots dx_n$ does not indicate repeated integration, but we will see that it represents repeated integration for "nice" functions.