
Lecture 17

17.1 Properties of Riemann-Darboux Integration

In the previous lecture, we introduced the Riemann-Darboux Integral. In this lecture, we will explore
some important properties of this integral, starting with a characterization.

Theorem 17.1.1 (Classification of Riemann Integrable Functions)

Let f ∈ B(Bn). Then f ∈ R(Bn) if and only if for every ϵ > 0, there exists a partition
P ∈ P(Bn) of Bn such that

(0 ≤) U(f, P )− L(f, P ) < ϵ

Proof. =⇒ Suppose f ∈ R(Bn). Then we have∫
f −

∫
f = 0

Thus,

0 =

∫
f −

∫
f = inf

P∈P(Bn)
U(f, P )− sup

P∈P(Bn)

L(f, P )

= inf
P∈P(Bn)

(U(f, P )− L(f, P ))

Hence for all ϵ > 0, there exists a partition P ∈ P(Bn) such that U(f, P )− L(f, P ) < ϵ.

⇐= Conversely, assume that for every ϵ > 0, there exists a partition P ∈ P(Bn) such that

U(f, P )− L(f, P ) < ϵ. We want to show that

∫
f =

∫
f . Since U(f, P ) ≥

∫
f and L(f, P ) ≤∫

f , it follows that for all ϵ > 0,

0 ≤
∫

f −
∫
f < ϵ

This implies

∫
f =

∫
f , showing that f ∈ R(Bn).

Exercise. Let f, g ∈ R(Bn). Then show that,

• |f | ∈ R(Bn) and

∣∣∣∣∫
Bn

f

∣∣∣∣ ≤ ∫
Bn

|f |
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• R(Bn) is a R−algebra by showing the following,

(i) For any α, β ∈ R, αf + βg ∈ R(Bn)

(ii) fg ∈ R(Bn)

Next, we demonstrate the Riemann integrability of a class of “nice” functions (continuous). However,
before proceeding, let’s introduce the concepts of the diameter of a set and the mesh of a partition.

Definition 17.1.1 ▶ Diameter of a set

For a set A ⊆ Rn, the diameter d(A) is defined as d(A) = sup{|x− y| | x, y ∈ A}.

Exercise. Show that d(Bn) = max {∥vi − vj∥ | vi, vj are vertices of Bn}

Definition 17.1.2 ▶ Mesh of a Partition

For a partition P ∈ P(Bn), the mesh ∥P∥ is defined as ∥P∥ = max{d(Bn
α) | α ∈ Λ(P )}.

Theorem 17.1.2 (Continuous Functions are Riemann Integrable)

The set of all continuous functions over Bn is contained in R(Bn), i.e.,

C(Bn) ⊂ R(Bn)

Proof. Let f ∈ C(Bn). Since f is uniformly continuous, for any ϵ > 0, there exists δ > 0 such that
for all x, y ∈ Bn with ∥x− y∥ < δ, we have,

|f(x)− f(y)| < ϵ

2Vol(Bn)︸ ︷︷ ︸
Call it ϵ̃

(17.1)

Let P ∈ P(Bn) be a partition such that ∥P∥ < δ. For each α ∈ Λ(P ), let aα ∈ Bn
α. Then ∥x−aα∥ < δ

for all x ∈ Bn
α. It follows from the uniform continuity condition (17.1) that,

|f(x)− f(aα)| < ϵ̃

i.e., f(aα)− ϵ̃ < f(x) < f(aα) + ϵ̃ (17.2)

Since, (17.2) holds for all α ∈ Λ(P ), aα ∈ Bn
α and for all x ∈ Bn

α we have,

f(aα)− ϵ̃ ≤ mα ≤ Mα ≤ f(aα) + ϵ̃

Multiplying the volumes of Bn
α and summing over Λ(P ), we obtain,∑

α∈Λ(P )

f(aα)Vol(B
n
α)−

ϵ

2
≤ L(f, P ) ≤ U(f, P ) ≤

∑
α∈Λ(P )

f(aα)Vol(B
n
α) +

ϵ

2

Thus, U(f, P )− L(f, P ) < ϵ, and since ϵ is arbitrary, we conclude that f ∈ R(Bn).

Now, let’s consider an important question: Does an analogue of the Fundamental Theorem of Calculus
exist in higher dimensions?

In one dimension (n = 1), we have the useful relationship

∫
[a,b]

df = f
∣∣∣
∂[a,b]

, which aids in computa-

tion.
However, this relationship becomes less practical in higher dimensions. For instance, in n = 1, the

continuous counterpart to a sum
∑

an is the one-dimensional integral

∫
B1

f . Similarly, in n = 2,

the continuous analogue to a double sum
∑

amn is the two-dimensional integral

∫
B2

f .
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17.2 Iterated Integrals

Before delving deeper into the concept of integrability, let’s take a brief detour to discuss the idea of
a double sum.

Definition 17.2.1 ▶ Convergence of Double Sequence

A double sequence {amn} converges to a if for every ϵ > 0 there exists a δ > 0 such that
|amn − a| < ϵ for all m,n ≥ N

Consider the following examples,

Example 17.2.1

• Let’s take the sequence {amn} defined by amn = 1
m+n for all m,n ∈ N. This sequence is

bounded, and for N > 1
2ϵ , we have |amn − 0| = amn < ϵ for all m,n ≥ N .

• Now consider the sequence {amn} defined as follows,

amn =

{
n if m = 1

1
m+n otherwise

This sequence is also convergent but not bounded.

Recall the relation between total limit and iterated limits in double sequence,

Theorem

For a double sequence {amn} if limm,n→∞ amn exists and limm→∞ amn exists for all n, then

lim
n→∞

(
lim

m→∞
amn

)
= lim

m,n→∞
amn

An important analogue of the above result is Fubini’s Theorem. Computation of the Darboux integral
is typically a challenging task. However, Fubini’s Theorem offers a valuable approach that simplifies
the computation by utilizing iterated integrals.

Visualization

We look at slice functions along each axis, which enables us to simplify computations and apply
Fubini’s Theorem for efficient evaluation of multivariable integrals.

Consider a function f : B2 → R. For each x ∈ [a1, b1] we define a slice function fx : [a2, b2] → R
given by fx(y) = f(x, y) for all y ∈ [a2, b2]. This function is obtained by fixing x and slicing along
the y-axis at that x-coordinate. Then an iterated integral becomes∫

[a1,b1]

(∫
[a2,b2]

fx(y) dy

)
dx

The question arise whether this quantity is invariant under the interchange of x and y, i.e., we may
slice f along x−axis at y to obtain fy : [a1, b1] → R given by fy(x) = f(x, y) for every x ∈ [a1, b1]
and want to investigate the equality of∫

[a1,b1]

(∫
[a2,b2]

fx(y) dy

)
dx

?
=

∫
[a2,b2]

(∫
[a1,b1]

fy(x) dx

)
dy

?
=

∫
B2

f (17.3)
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In this context, we observe that a partition P ∈ P(B2) can be decomposed into the partitions of the
individual coordinates. Specifically, we have P = P1 ×P2 for the two coordinate intervals [a1, b1] and
[a2, b2], and the corresponding indexing sets satisfy Λ(P ) = Λ(P1)× Λ(P2).

Now consider the following example,

Example 17.2.2 (A discrepancy: Function integrable, slices not)

Let I = [0, 1] and B2 = I × I. Consider the function f : B2 → R given by,

f(x, y) =

{
1 if x = 1

2 , y ∈ Q ∩ [0, 1]

0 otherwise

So the x−slice becomes,

fx ≡ 0 for all x ̸= 1

2
and f 1

2
(y) =

{
1 if y ∈ Qc ∩ [0, 1]

0 if y ∈ Q ∩ [0, 1]
Dirichlet Function

and y−slice,

For y ∈ Q ∩ [0, 1], fy(x) =

{
1 if x = 1

2

0 otherwise

For y ∈ Qc ∩ [0, 1], fy ≡ 0

Clearly, fx ∈ R(I) for all x ∈ 1
2 but f 1

2
̸∈ R(I) and fy ∈ R(I) for every y. So,∫

I

fy = 0 =⇒
∫
I

(∫
I

fy(x) dx

)
dy = 0

But,

∫
I

fx doesn’t exist for x = 1
2 which means x 7−→

∫
I

fx is not a well-defined function on [0, 1].

Hence,

∫
I

(∫
I

fx(y) dy

)
dx doesn’t exist. Yet f ∈ R(B2). To see this, we fix ϵ > 0 and consider

the partition P = P1 × P2 where,{
P1 : 0 < 1

2 − ϵ < 1
2 + ϵ < 1

P2 : 0 < 1

So, P =

{[
0,

1

2
− ϵ

]
× I︸ ︷︷ ︸

Bα1

,

[
1

2
− ϵ,

1

2
+ ϵ

]
× I︸ ︷︷ ︸

Bα2

,

[
1

2
− ϵ, 1

]
× I︸ ︷︷ ︸

Bα3

}
.

Then mα1 = mα2 = mα3 = 0, Mα1 = Mα3 = 0 and Mα2 = 1, which implies U(f, P )− L(f, P ) =
2ϵ < 3ϵ. This shows that f ∈ R(B2). Again L(f, P ) = 0 for all P ∈ P(B2) and hence,∫

B2

f = 0

Question. Under which conditions does (17.3) hold?
Answer. Fubini’s Theorem. The conditions for (17.3) to hold will be discussed in the next lecture.
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