
Lecture 18

18.1 Fubini’s Theorem

In this lecture, we explore Fubini’s Theorem. Let’s begin by setting up the necessary framework.

Consider the (m+ n)-dimensional space, where m and n are positive integers. We can decompose a
box Bm+n ⊆ Rm+n as the Cartesian product of two boxes, Bm+n = Bm ×Bn. Here, Bm represents
a box in Rm, and Bn represents a box in Rn.

Now, suppose we have a partition P ∈ P(Rm+n). We can express this partition as the Cartesian
product of two partitions, P = Pm×Pn, where Pm ∈ P(Rm) and Pn ∈ P(Rn). The corresponding
indexing set for this partition becomes Λ(P ) = Λ(Pm)× Λ(Pn). Consequently, the elements of Λ(P )
can be written as α(P ) = (α(Pm), α(Pn)).

By extending this decomposition, we can also break down the elements of the boxes, Bα(P ) =
Bα(Pm) ×Bα(Pn).

Throughout this section, we take x ∈ Bm and y ∈ Bn to represent the point (x, y) ∈ Bm+n. For a
bounded function f ∈ B(Bm+n), we define the slice functions

• fx : Bn → R as y 7→ f(x, y) for all x ∈ Bm.

• fy : Bm → R as x 7→ f(x, y) for all y ∈ Bn.

It is worth noting that fx ∈ B(Bn) and fy ∈ B(Bm). For a fixed x ∈ Bm, we can compute the
lower and upper integrals of fx over Bn, denoted as f(x) and f(x) respectively. Similarly, we can
compute the lower and upper integrals of fy over Bm for fixed y ∈ Bm. These are given by,

f(x) =

∫
Bn

fx(y) dV (y) and f(x) =

∫
Bn

fx(y) dV (y)

with similar expressions for y. Now, let’s state Fubini’s Theorem.

Theorem 18.1.1 (Fubini’s Theorem)

Let f ∈ R(Bm+n). Then f, f ∈ R(Bn) and,∫
Bm

f =

∫
Bm

f =

∫
Bm+n

f

Consequently, we have the following corollaries,
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Corollary

For any f ∈ R(Bm+n), the following equalities hold,∫
Bm

(∫
Bn

f(x, y) dV (y)

)
dV (x) =

∫
Bm

(∫
Bn

f(x, y) dV (x)

)
dV (y)

=

∫
Bm+n

f(x, y) dV (x, y)

Furthermore, if fx ∈ R(Bn) for all x, then f = f and∫
Bm

(∫
Bn

f(x, y) dV (y)

)
dV (x) =

∫
Bm+n

f(x, y) dV (x, y)

Corollary

If f ∈ C(Bn), then all possible slice functions are continuous and hence Riemann Integrable.
Thus, multidimensional integral becomes the iterated one-dimensional integrals,∫

Bn

f =

∫ (∫
· · ·
∫ (∫

f dx1

)
dx2 · · · dxn−1

)
dxn

where, xi’s can be in any order.

(n = 2) Hence, if f ∈ C(B2), then (17.3) holds,∫
B2

f =

∫ b1

a1

(∫ b2

a2

f(x, y) dy

)
dx =

∫ b2

a2

(∫ b1

a1

f(x, y) dx

)
dy

Proof of the Fubini’s Theorem. Let P = Pm × Pn be a partition of Bm+n. Then, we can express
the lower sum L(f, P ) as follows,

L(f, P ) =
∑

α(P )∈Λ(P )

mα(P ) Vol
(
Bm+n

α(P )

)
=

∑
α(Pm)∈Λ(Pm)

∑
α(Pn)∈Λ(Pn)

m(α(Pm),α(Pn)) Vol
(
Bn

α(Pn)

)
︸ ︷︷ ︸

lPm

Vol
(
Bm

α(P )m

)

For each x ∈ Bm and α(Pn) ∈ Λ(Pn), letmα(Pn)(x) = infy∈Bn
α(Pn)

fx(y). It follows thatmα(Pn)(x) ≥
m(α(Pm),α(Pn)) for every x ∈ Bm

α(Pm). Consequently, we have,

lPm ≤
∑

α(Pn)∈Λ(Pn)

mα(Pn) Vol
(
Bn

α(Pn)

)
= L(fx, P

n) ≤
∫

Bn

fx

Taking infimum over all x ∈ Bm
α(Pm), we obtain,

lPm ≤ inf
x∈Bm

α(Pm)

∫
Bn

fx



18.1. FUBINI’S THEOREM 3

= inf
x∈Bm

α(Pm)

f(x) = mα(Pm)

Thus, the lower sum becomes,

L(f, P ) ≤
∑

α(Pm)∈Λ(Pm)

mα(Pm) Vol
(
Bm

α(Pm)

)
= L(f, Pm)

Similarly, we can show that U(f, P ) ≥ U(f, Pm). Consequently, f ∈ R(Bm), and we have,∫
Bm

f dV (x) =

∫
Bm+n

f

By following analogous arguments, we can show that f ∈ R(Bm) and,∫
Bm

f dV (x) =

∫
Bm+n

f =

∫
Bm

f dV (x)

Question: Will the function be Riemann integrable if all the slices are Riemann integrable?
We will address this question later. In the meantime, let’s conclude this lecture with an example.

Example 18.1.1

Consider the integral ∫
[0,1]2

xy dx dy︸ ︷︷ ︸
dv

We can evaluate this integral by iterated integration as follows,∫ 1

0

(∫ 1

0

xy dx

)
dy =

∫ 1

0

y

(∫ 1

0

x dx

)
dy

=

∫ 1

0

y

2
dy =

1

4

Alternatively, we can also express it as,

∫ 1

0

y

(∫ 1

0

x dx

)
dy =

(∫ 1

0

x dx

)(∫ 1

0

y dy

)
, which

yields the same result.
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