
Lecture 20

In the previous lecture we extended integration over boxes to over what we called elementary regions.
This lecture explores the extention of Fubini’s theorem to integration over such sets, and talk about
some applications thereof. Towards the end, we discuss the celebrated change of variables formula of
multivariable calculus.

20.1 Fubini’s Theorem on Elementary Regions

For integration over elementary regions, Fubini’s theorem takes the following form.

Theorem 20.1.1

Let f ∈ R(Ω) where Ω ⊆ R2 is a bounded elementary domain.

(1) If Ω = {(x, y) | a ≤ x ≤ b, and φ1(x) ≤ y ≤ φ2(x)} and if

∫ φ2(x)

φ1(x)

f(x, y) dy exists for

all x ∈ [a, b] then ∫
Ω

f dA =

∫ b

a

(∫ φ2(x)

φ1(x)

f(x, y) dy

)
dx

(2) Similarly we have ∫
Ω

f dA =

∫ d

c

(∫ ψ2(y)

ψ1(y)

f(x, y) dx

)
dy

when Ω is x-simple.

Proof. There exists c, d ∈ R such that Ω ⊆ [a, b]× [c, d] = B2. We know f̃ ∈ R(B2) where

f̃(x, y) =

{
f(x, y) if (x, y) ∈ Ω

0 if (x, y) ∈ B2 \ Ω

Since f̃ ∈ R(B2), and since

∫ φ2(x)

φ1(x)

f(x, y) dy exists for fixed x, hence

f̃(x, ·)
∣∣
[φ1(x),φ2(x)]

and f̃(x, ·)
∣∣
[c,d]\[φ1(x),φ2(x)]

≡ 0

are both Riemann integrable. Thus, we get that f̃(x, ·)|[c,d] ∈ R([c, d]) and hence

∫ d

c

f̃(x, y) dy exists

for all x ∈ [a, b] and further we have∫ d

c

f̃(x, y) dy =

∫ φ2(x)

φ1(x)

f(x, y) dy ∀x ∈ [a, b]
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Then we get

=⇒
∫ b

a

(∫ d

c

f̃(x, y) dy

)
dx =

∫ b

a

(∫ φ2(x)

φ1(x)

f(x, y) dy

)
dx

(∗)
=⇒

∫
B2

f̃ dA =

∫ b

a

(∫ φ2(x)

φ1(x)

f(x, y) dy

)
dx

=⇒
∫
Ω

f dA =

∫ b

a

(∫ φ2(x)

φ1(x)

f(x, y) dy

)
dx

where (∗) follows from Theorem 18.1.1. An analogous argument works for the x-simple regions.

Example 20.1.1

Let f ∈ C(Ω) where Ω =
{
(x, y) | 0 ≤ x ≤ 1− y

2 , and 0 ≤ y ≤ 2
}
. Then we can write Ω as a

y-simple region as follows:

Ω = {(x, y) | 0 ≤ x ≤ 1, and 0 ≤ y ≤ 2(1− x)} .

Now, using Theorem 20.1.1 we get the required result.∫
Ω

f dA =

∫ 2

0

(∫ 1− y
2

0

f(x, y) dx

)
dy =

∫ 1

0

(∫ 2(1−x)

0

f(x, y) dy

)
dx

Example 20.1.2

Let B2 = [0, π]× [−π
2 ,

π
2 ], and we want to evaluate the integral

∫
B2

sin(x+ y) dA.

∫
B2

sin(x+ y) dA =

∫
B2

sinx cos y dA+

∫
B2

sin y cosx dA

=

(∫ π
2

−π
2

cos y dy

)(∫ π

0

sinx dx

)
+

(∫ π
2

−π
2

sin y dy

)(∫ π

0

cosxdx

)
= 4

Example 20.1.3

Let Ω be the region bounded by y = 1 and y = x2, and we want to find

∫
Ω

x2y dV . We can write

Ω as a y-simple region as follows:

Ω = {(x, y) | −1 ≤ x ≤ 1, and x2 ≤ y ≤ 1}

Then using Theorem 20.1.1 we get that∫
Ω

x2y dA =

∫ 1

−1

(∫ 1

x2

x2y dy

)
dx

=

∫ 1

−1

x2

(
y2

2

) ∣∣∣∣1
x2

dx =
2

15
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Example 20.1.4

Compute

∫
[0,1]2

f dA where f : [0, 1]2 → R is given by

f(x, y) =

{
x if y ≤ x2

y if y > x2
∀ (x, y) ∈ [0, 1]2

We define the regions

Ω1 = {(x, y) | 0 ≤ x ≤ 1, 0 ≤ y ≤ x2} and Ω2 = {(x, y) | 0 ≤ x ≤ 1, x2 ≤ y ≤ 1}.

Then f |Ω1 and f |Ω2 are both Riemann integrable, and while f |y=x2 is not continuous, the set
{(x, x2) | 0 ≤ x ≤ 1} is of content zero. Hence f is integrable, and we can make sense of writing
the given integral as a sum ∫

[0,1]2
f dA =

∫
Ω1

f dA+

∫
Ω2

f dA

Using Theorem 20.1.1, we can simplify each of these parts:∫
Ω1

f dA =

∫ 1

0

(∫ x2

0

x dy

)
dx =

1

4

∫
Ω2

f dA =

∫ 1

0

(∫ 1

x2

y dy

)
dx =

2

5

Thus, we have the result ∫
[0,1]2

f dA =
13

20

Example 20.1.5

Compute

∫ π
2

0

∫ π
2

x

sin y

y
dy dx using Fubini’s theorem.

We consider the region Ω =
{
(x, y) | 0 ≤ x ≤ π

2 , x ≤ y ≤ π
2

}
⊆ R2 can be written as a x-simple

region as follows:

Ω =
{
(x, y) | 0 ≤ y ≤ π

2
, 0 ≤ x ≤ y

}
This shows that ∫

Ω

sin y

y
dA =

∫ π
2

0

∫ π
2

x

sin y

y
dy dx

=

∫ π
2

0

∫ y

0

sin y

y
dxdy

=

∫ π
2

0

sin y dy

= 1
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20.2 Change of Variables

Before discussing the theorem in the multivariable case, we recall the change of variable rule for real
valued functions on the real line.

Theorem 20.2.1 (Change of Variable on R)

Let φ : O1 → R be a C1 function where φ′(x) ̸= 0 for all x ∈ O1. Then, for [a, b] ⊆ O1 and
f ∈ C(φ[a, b]), we have ∫ φ(b)

φ(a)

f =

∫ b

a

(f ◦ φ)φ′.

Here we effectively compensate for the change of variable by introducing the scale change factor of
φ′. As we have seen, the scale change factor at a point for a transformation on Rn is given by the
detereminant of the Jacobian matrix at that point. Thus, this theorem has the following natural
extension to Rn:

Theorem 20.2.2 (Change of Variable on Rn)

Let φ : On → Rn be an injective and C1 function, where det(Jφ(x)) ̸= 0 for all x ∈ On. Let
Ω ⊆ On, then for f ∈ R(φ(Ω))∫

φ(Ω)

f dV =

∫
Ω

(f ◦ φ)|det Jφ|

Although it is not too hard to get a feel for the theorem from its applications, the proof is quite long
and technical, and thus omitted. We recommend the interested and daring readers to have a look
at page 67 of Calculus on Manifolds by Michael Spivak. In the next lecture, we will discuss some
applications of this result.
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