
Lecture 27

27.1 Conservative Vector Fields

In the previous lecture we introduced the notion of an oriented surface. For an oriented surface
S ⊆ R3, we call the orientation vector field n⃗ : S → R3 the normal vector field. Now we give an
example of such a vector field.

Example 27.1.1

Figure 27.1: Standard normal vector
field on a sphere

Take Sn−1 := {x ∈ Rn | ∥x∥ = 1}.
Then

n⃗1(x) = x ∀x ∈ Sn−1

and
n⃗2(x) = −x ∀x ∈ Sn−1

are the two normal vector fields on the sphere.

Generally we consider the outward normal vector, i.e., the
normal vector field given by n⃗1 as the standard normal
vector field on the sphere.

Figure 27.2: Normal vector fields on
a graph surface

Formula for Normal Vector Field.
Let G(f) = {(x, y, f(x, y)) | (x, y) ∈ O2} where f :
O2 → R is a C1 function. Then a parametrization of
the surface G(f) is given by the function

r⃗ : O2 → R3

(x, y) 7→ (x, y, f(x, y))

Then we have

r⃗x × r⃗y = (−fx,−fy, 1)

Then a normal vector field is given by

n⃗(x, y) =
r⃗x × r⃗y

∥r⃗x × r⃗y∥

Unless otherwise mentioned this will be our standard orientation of the normal vector field.

Usually computation of

∫
S

F⃗ ·dS⃗ is complicated, let us look at some examples to gain more familiarity.
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Example 27.1.2

Consider the vector field F⃗ (x, y, z) = (x, y, z) on S = ran(r), where

r⃗(x, y) = (cosx, sinx, y) 0 ≤ x ≤ π

2
, 0 ≤ y ≤ 1

Then r⃗x × r⃗y = (cosx, sinx, 0), so n⃗(x, y) = (cosx, sinx, 0) is a normal vector field.∫
S

F⃗ · dS⃗ =

∫
S

F⃗ · n⃗ds

=

∫ 1

0

∫ π
2

0

F⃗ (r⃗(x, y)) · (r⃗x × r⃗y) dA

=

∫ 1

0

∫ π
2

0

(cosx, sinx, y) · (cosx, sinx, 0)dA

=

∫ 1

0

∫ π
2

0

dA

=
π

2

We already know that

∫
C
∇f · dr = f(B)− f(A), now a natural question that arises is

Question: Given F⃗ , does there exist f a scalar field such that ∇f = F⃗ ?

Definition 27.1.1 ▶ Conservative Vector Field

A vector field F⃗ on On is called conservative if there exists a scalar field f ∈ C1(On) such

that ∇f = F⃗ , then f is called the potential function.

Theorem 27.1.1

Let F⃗ be a vector field over On, the following are equivalent:

1. F⃗ is conservative.

2.

∫
C
F⃗ · dr = 0, for all closed and piecewise smooth curve C.

3.

∫
C1

F⃗ · dr =

∫
C2

F⃗ · dr, for all curves C1 and C2 with same initial and end points.

Question: Given a vector field F⃗ , can we conclude F⃗ is conservative? (NO!)

We will give a general picture for the most common case, when n = 3. Let F⃗ = (P,Q,R) where

P,Q,R are scalar fields. Now if F⃗ = ∇f for some scalar field f , then we would have

fx ≡ ∂f

∂x
= P

fy ≡ ∂f

∂y
= Q (27.1)

fz ≡ ∂f

∂z
= R
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Then we can define curl of a vector field

∇× F⃗ :=

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣
Then expanding this out and using the relations (27.1) and others we get that ∇× F⃗ = 0. So, we

have proved that if F⃗ is conservative then ∇× F⃗ = 0.

Remark. Thus, a necessary condition for a vector field to be conservative is that, its curl should be
the zero vector field.

Example 27.1.3

Let F⃗ (x, y) = (y − 3, x + 2) = (P,Q) (say), then ∂P
∂y = ∂Q

∂x = 1. Let f be a possible potential
function, then

∂f

∂x
= y − 3 and

∂f

∂y
= x+ 2

Then by Fundamental Theorem of Calculus (assuming domain is convex) we get

f(x, y) = xy − 3x+ g(y)

But then using ∂f
∂y = x+ 2 we get

x+ g′(y) =
∂f

∂y
= x+ 2 ⇒ g′(y) = 2

Therefore taking f(x, y) = xy − 3x+ 2y gives us a potential function for the vector field F⃗ .

Remark. This approach works for all F⃗ such that ∇× F⃗ = 0 and the domain is convex.

Example 27.1.4

Let F⃗ (x, y) =
(

−y
x2+y2 ,

x
x2+y2

)
= (P,Q) (say) on R2 \ {0}. Then we have ∂P

∂y = ∂Q
∂x , but we will

show that F⃗ is not conservative. Consider the curve

C : γ(t) = (cos t, sin t), 0 ≤ t ≤ 2π

then ∫
C
F⃗ · dr =

∫ 2π

0

F⃗ (γ(t)) · γ′(t) dt

=

∫ 2π

0

(− sin t, cos t) · (− sin t, cos t) dt

=

∫ 2π

0

dt

= 2π

But C is clearly a closed curve, hence by Theorem 27.1.1 we must have

∫
C
F⃗ ·dr = 0. (Contradiction!)
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27.2 Green’s Theorem

Definition 27.2.1 ▶ Simply Connected Domain

Let D be an open and connected set. Let C be a simple and closed curve if C can be shrunk
continuously to a point inside D, then we say D is simply connected.

Figure 27.3: Examples of simply connected and not simply connected region

Theorem 27.2.1 (Green’s Theorem)

Let R ⊆ R2 be a simply connected domain with boundary curve C where parametrization is
taken in anti-clockwise direction. Let F⃗ = (P,Q) be a C1 vector field on R, then∫

C
F⃗ · dr :=

∫
C
P dx+Qdy =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA

What happens when R is not simply connected?

Figure 27.4: You break up the region C with the hole into two regions without holes C1 and C2.
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∫
C
P dx+Qdy =

∫
C̃1

P dx+Qdy +

∫
C̃2

P dx+Qdy

=

∫
R1

(Qx − Py) dA+

∫
R2

(Qx − Py) dA

=

∫
R
(Qx − Py) dA
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