Lecture 28

28.1 Green's Theorem

Theorem 28.1.1 (\mathbb{R}^2 version of Green's Theorem)

Let $\mathcal{R} \subseteq \mathbb{R}^2$ be a simply connected domain with boundary curve \mathcal{C} where parametrization is taken in anti-clockwise direction. Let $\vec{F} = (P, Q)$ be a C^1 vector field on \mathcal{R} , then

$$\int_{\mathcal{C}} \vec{F} \cdot \mathrm{d}r := \int_{\mathcal{C}} P \,\mathrm{d}x + Q \,\mathrm{d}y = \int_{\mathcal{R}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \,\mathrm{d}A$$

Proof.

(for Simple region) Let $\mathcal{R} = \{(x, y) \mid a \leq x \leq b, \varphi_1(x) \leq y \leq \varphi_2(x)\}$ be a simple region. Here $\mathcal{C} = \mathcal{C}_1 \cup \mathcal{V}_2 \cup \mathcal{C}_2 \cup \mathcal{V}_1$ is the curve bounding the region along anticlockwise direction (as shown in Figure 28.1).

Now,

$$-\int_{\mathcal{R}} \frac{\partial P}{\partial y} dA = -\int_{a}^{b} \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} \frac{\partial P}{\partial y} dy dx$$
$$= -\int_{a}^{b} (P(x,\varphi_{2}(x)) - P(x,\varphi_{1}(x))) dx$$

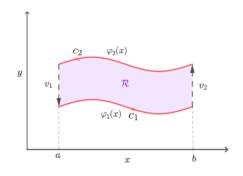


Figure 28.1: A simple region

The curves C_1, C_2, V_1, V_2 can be explicitly written as,

$$\mathcal{V}_{1} = \{(a,t) \mid \varphi_{1}(a) \le t \le \varphi_{2}(a)\} \\ \mathcal{C}_{1} = \{(x,\varphi_{1}(x)) \mid a \le x \le b\} \\ \mathcal{V}_{2} = \{(a,t) \mid \varphi_{1}(b) \le t \le \varphi_{2}(b)\} \\ \mathcal{C}_{2} = \{(x,\varphi_{2}(x)) \mid a \le x \le b\}$$

We compute the integrals for P over these curves and obtain,

$$\int_{\mathcal{V}_1} P \, \mathrm{d}x = \int_{\mathcal{V}_1} P(x(t), y(t)) \frac{\mathrm{d}x(t)}{\mathrm{d}t} \mathrm{d}t = 0$$
$$\int_{\mathcal{C}_1} P \, \mathrm{d}x = \int_a^b P(t, \varphi_1(t)) \, \mathrm{d}t$$
$$\int_{\mathcal{C}_2} P \, \mathrm{d}x = \int_a^b P(t, \varphi_2(t)) \, \mathrm{d}t$$

$$\implies \int_{\mathcal{C}} P \mathrm{d}x = -\int_{\mathcal{R}} \frac{\partial P}{\partial y} \,\mathrm{d}A$$

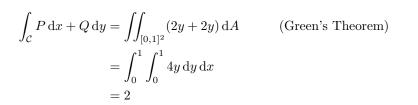
By similar mechanism we can show $\int_{\mathcal{C}} Q \, \mathrm{d}y = \int_{\mathcal{R}} \frac{\partial Q}{\partial y} \, \mathrm{d}A$. The rest follows from here.

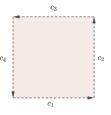
Example 28.1.1

Let \mathcal{C} be the boundary of $[0,1]^2$, i.e., $\partial [0,1] \times [0,1] = \mathcal{C}$. Evaluate

$$\int_{\mathcal{C}} \langle x^2 - y^2, 2xy \rangle$$

Solution. We can decompose $C = C_1 \cup C_2 \cup C_3 \cup C_4$ (as in the following picture) Let $P(x, y) = x^2 - y^2$, Q(x, y) = 2xy. Then the integral,





If we try to calculate the integral **directly**, we will end up getting same Figure 2 result.

Figure 28.2: $\partial([0,1]^2)$

Area of a closed Region. Let \mathcal{R} (simply connected) be a closed region and $\mathcal{C} = \partial \mathcal{R}$ be the curve enclosing the region. Using Green's Theorem we get,

Area(
$$\mathcal{R}$$
) = $\int_{\mathcal{R}} dA = \int_{\mathcal{C}} x dy = \int_{\mathcal{C}} -y dx = \int_{\mathcal{C}} \frac{x dy - y dx}{2}$

Example 28.1.2 (Area inside the ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$)

Solution. Parametrization of ellipse $x = a \cos t$, $y = b \sin t$ where $t \in [0, 2\pi)$. Using the above application of Green's Theorem we can write,

Area =
$$\int_{\mathcal{C}} x dy = ab \int_{0}^{2\pi} \cos^2 t dt = \pi ab$$

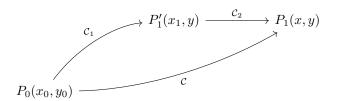
Theorem 28.1.2 (Independence of path)

Let \vec{F} be a C^1 vector field on \mathbb{R}^2 such that $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ is independent of path. Then \vec{F} is conservative over an open and simply connected domain.

Proof. Let \mathcal{D} be an open and connected domain. $\vec{F} = \langle P, Q \rangle$ is defined over \mathcal{D} . Also let $P_0 = \langle x_0, y_0 \rangle$ be a fixed point in the domain \mathcal{D} and $P_1 = \langle x, y \rangle \in \mathcal{D}$ be a variable point. \mathcal{C} be a smooth curve joining P_0 and P_1 . Define

$$\varphi(x,y) = \int_{\mathcal{C}} \vec{F} \cdot \mathrm{d}\vec{r}$$

Since, \mathcal{D} is open set, so we must get an open ball centered at P_1 contained in \mathcal{D} . Take a point $P'_1 = \langle x_1, y \rangle$ inside that open ball such that $x_1 < x$. Let \mathcal{C}_1 be a smooth curve from P_0 to P_1 and \mathcal{C}_2 be a line segment from P'_1 to P_1 . So, $\mathcal{C}_1 \cup \mathcal{C}_2$ defines a smooth curve from P_0 to P_1 .



As $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ is path independent We can write,

$$\varphi(x,y) = \int_{\mathcal{C}_1} \vec{F} \cdot \mathrm{d}\vec{r} + \int_{\mathcal{C}_2} \vec{F} \cdot \mathrm{d}\vec{r}$$

Now we take the partial derivative of both sides of this equation with respect to x. The first integral does not depend on the variable x since C_1 is the path from $P_0(x_0, y_0, z_0)$ to $P'_1(x_1, y, z)$ and so partial differentiating this line integral with respect to x is zero.

$$\frac{\partial \varphi}{\partial x} = \frac{\partial}{\partial x} \left(\int_{\mathcal{C}_1} \vec{F} \cdot d\vec{r} + \int_{\mathcal{C}_2} \vec{F} \cdot d\vec{r} \right)$$
$$= \underbrace{\frac{\partial}{\partial x} \left(\int_{\mathcal{C}_1} \vec{F} \cdot d\vec{r} \right)}_{=0} + \frac{\partial}{\partial x} \left(\int_{\mathcal{C}_2} \vec{F} \cdot d\vec{r} \right)$$

Also, C_2 can be parametrized as $r(t) = \langle t, y \rangle$ where $t \in [x_1, x]$. So,

$$\begin{aligned} \frac{\partial}{\partial x} \left(\int_{\mathcal{C}_2} \vec{F} \cdot \mathrm{d}\vec{r} \right) &= \frac{\partial}{\partial x} \left(\int_{x_1}^x \left\langle P(t, y), Q(t, y) \right\rangle \cdot \left\langle 1, 0 \right\rangle \mathrm{d}t \right) \\ &= \frac{\partial}{\partial x} \left(\int_{x_1}^x P(t, y) \, \mathrm{d}t \right) \\ &= P(x, y) \end{aligned}$$
 [Fundamental Theorem of calculus]

Similarly, we can show that, $\frac{\partial \varphi}{\partial y} = Q(x, y)$. And hence, $\nabla \varphi = \vec{F}(x, y)$. We can define φ as the potential of \vec{F} .

Theorem 28.1.3

Let \mathcal{D} be a simply connected domain in \mathbb{R}^2 and \vec{F} is a C^1 vector field on \mathcal{D} . Then \vec{F} is conservative iff $\nabla \times \vec{F} = 0$ on \mathcal{D} .

Proof. (\Rightarrow) This direction is trivial.

 $(\Leftarrow) \text{ From Green's Theorem we can say that } \int_{\mathcal{C}} \vec{F} \cdot d\vec{r} = 0 \text{ over all closed curve } \mathcal{C}. \text{ For any two point } p_0, p_1 \in \mathcal{D} \text{ if } \gamma_1, \gamma_2 : [0,1] \to \mathcal{D} \text{ are two smooth curves joining } p_0 \text{ and } p_1. \text{ (i.e., } \gamma_1(0) = \gamma_2(0) = p_0 \text{ and } \gamma_1(1) = \gamma_2(1) = p_1) \text{ then } \gamma_1 \cup \gamma_2(1-t) \text{ is a closed curve. So, } \int_{\gamma_1} \vec{F} \cdot d\vec{r} = \int_{\gamma_2} \vec{F} \cdot d\vec{r}. \text{ Which means the integral is path independent. Using the previous theorem we can say, } \vec{F} \text{ is conservative on } \mathcal{D}. \square$

28.2 Gauss Divergence Theorem

Definition 28.2.1 \blacktriangleright Divergence of a vector field Given a vector field $\vec{F} = (f_1, \dots, f_n) : \mathbb{R}^n \to \mathbb{R}^n$, the "Divergence" of \vec{F} is, $\operatorname{div}(F) = \sum_{i=1}^n \frac{\partial f_i}{\partial x_i} \equiv \nabla \cdot \vec{F}$

Theorem 28.2.1 (Gauss Divergence Theorem)

Let $\mathcal{D} \subseteq \mathbb{R}^3$ a solid domain, $\partial \mathcal{D}$ be an oriented surface. Let $\vec{F} = \langle P, Q, R \rangle$ be a C^1 vector field on an open surface containing $\mathcal{D} \cup \partial \mathcal{D}$. Then,

$$\underbrace{\int_{\partial \mathcal{D}=\mathcal{S}} \vec{F} \cdot \mathrm{d}\vec{S}}_{\text{surface integral}} = \underbrace{\int_{\mathcal{D}} \nabla \cdot \vec{F} \, \mathrm{d}V}_{\text{volume integral}}$$

Just like FTC, the behavior over a volume is fully determined by the behavior at the boundary. Proof of this theorem is beyond our reach. But we can see the proof for simple cases.

Proof. (For a simple case) Consider $\mathcal{D} = \{(x, y, z) \mid \varphi_1(x, y) \leq z \leq \varphi_2(x, y), (x, y) \in [a, b] \times [c, d]\}.$ (Exercise.) Complete the proof!

Example 28.2.1

 $F(x, y, z) = \langle x + y, z^2, x^2 \rangle$ and S be the hemisphere $x^2 + y^2 + z^2 = 1, z > 0$. Compute,

$$\int_{S} \vec{F} \, \mathrm{d}\vec{S}$$

Solution. Notice that S is open surface. We want to use Gauss Theorem 28.2.1. So we need a close surface. Let S_1 be the surface $x^2 + y^2 \leq 1$. Then $S \sqcup S_1$ is a closed surface.

$$\int_{S \sqcup S_1} \vec{F} \cdot d\vec{S} = \int_{x^2 + y^2, z^2 \le 1, z \ge 0} \nabla \cdot \vec{F} \, dV$$
$$= \int_{x^2 + y^2, z^2 \le 1, z \ge 0} \, dV$$
$$= \frac{2\pi}{3}$$

Parametrization of the surface $S_1 = \{(x, y, 0) \mid x^2 + y^2 = 1\}$. So, $r_x \times r_y = \langle 1, 0, 0 \rangle \times \langle 0, 1, 0 \rangle$.

$$\begin{split} \int_{S_1} \vec{F} \cdot \mathrm{d}\vec{S} &= \int_{x^2 + y^2 \leq 1} \left\langle x + y, z^2, x^2 \right\rangle \cdot \left\langle 0, 0, 1 \right\rangle \mathrm{d}A = \int_{x^2 + y^2 \leq 1} x^2 \, \mathrm{d}A \\ &= \int_0^{2\pi} \int_0^1 r^3 \cos^2\theta \, \mathrm{d}r \, \mathrm{d}\theta = \frac{\pi}{4} \\ \Rightarrow \int_S \vec{F} \cdot \mathrm{d}\vec{S} &= \frac{11\pi}{12} \end{split}$$

28.3 Stokes' Theorem

Theorem 28.3.1 (Stokes' Theorem)

Let \mathcal{C} be a C^1 curve enclosing an oriented surface \mathcal{S} in \mathbb{R}^3 . Let, $\vec{F} = \langle P, Q, R \rangle$ be a C^1 vector field on an open set containing \mathcal{S} . Then,

$$\int_{\mathcal{C}} \vec{F} \cdot \mathrm{d}\vec{r} = \int_{\mathcal{S}} \left(\boldsymbol{\nabla} \times \vec{F} \right) \cdot \mathrm{d}\vec{S}$$

Here orientation of \mathcal{S} and direction of \mathcal{C} is same.

Example 28.3.1

Compute $\int_{\mathcal{C}} \vec{F} \cdot d\vec{r}$, where $\mathcal{C} : x^2 + y^2 = 9, z = 4$ and $\vec{F} = \langle -y, x, xyz \rangle$.

Solution. $\nabla \times \vec{F} = \langle xz, -yz, 2 \rangle$. By convention, we should assume direction of C is along counter-clockwise direction. So, The normal vector of S is along negative z axis. So, required integral,

$$\begin{split} \int_{\mathcal{C}} \vec{F} \cdot d\vec{r} &= \int_{\mathcal{S}} (\boldsymbol{\nabla} \times \vec{F}) \cdot d\vec{S} \\ &= \int_{x^2 + y^2 \le 1, z = 4} (\boldsymbol{\nabla} \times \vec{F}) \cdot \langle 0, 0, -1 \rangle \, \mathrm{d}A \\ &= -2 \int_{x^2 + y^2 \le 1, z = 4} \, \mathrm{d}A \\ &= -18\pi \end{split}$$

Stoke's Theorem is the \mathbb{R}^3 -analogue of Green's Theorem 28.1.1. If we take the third component of \vec{F} to be zero, i.e., R = 0, then Stoke's Theorem 28.3.1 gives us back Green's Theorem 28.1.1.

There is a generalized version of Stokes' theorem. Just for information the theorem is stated below.

• If Ω is an oriented *n*-manifold (with boundary) and ω is a differential form ((n-1) form). Then integral of ω over the boundary $\partial\Omega$ of the manifold Ω is given by,

$$\int_{\partial\Omega}\omega = \int_{\Omega}\mathrm{d}\omega$$