
Lecture 28

28.1 Green’s Theorem

Theorem 28.1.1 (R2 version of Green’s Theorem)

Let R ⊆ R2 be a simply connected domain with boundary curve C where parametrization is
taken in anti-clockwise direction. Let F⃗ = (P,Q) be a C1 vector field on R, then∫

C
F⃗ · dr :=

∫
C
P dx+Qdy =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA

Proof .

Figure 28.1: A simple region

(for Simple region)
LetR = {(x, y) | a ≤ x ≤ b, φ1(x) ≤ y ≤ φ2(x)}
be a simple region. Here C = C1 ∪ V2 ∪ C2 ∪ V1

is the curve bounding the region along anti-
clockwise direction (as shown in Figure 28.1).

Now,

−
∫
R

∂P

∂y
dA = −

∫ b

a

∫ φ2(x)

φ1(x)

∂P

∂y
dy dx

= −
∫ b

a

(P (x, φ2(x))− P (x, φ1(x))) dx

The curves C1, C2,V1,V2 can be explicitly written as,

V1 = {(a, t) | φ1(a) ≤ t ≤ φ2(a)}
C1 = {(x, φ1(x)) | a ≤ x ≤ b}
V2 = {(a, t) | φ1(b) ≤ t ≤ φ2(b)}
C2 = {(x, φ2(x)) | a ≤ x ≤ b}

We compute the integrals for P over these curves and obtain,∫
V1

P dx =

∫
V1

P (x(t), y(t))
dx(t)

dt
dt = 0∫

C1

P dx =

∫ b

a

P (t, φ1(t)) dt∫
C2

P dx =

∫ b

a

P (t, φ2(t)) dt
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=⇒
∫
C
Pdx = −

∫
R

∂P

∂y
dA

By similar mechanism we can show

∫
C
Qdy =

∫
R

∂Q

∂y
dA. The rest follows from here.

Example 28.1.1

Let C be the boundary of [0, 1]2, i.e., ∂[0, 1]× [0, 1] = C. Evaluate∫
C
⟨x2 − y2, 2xy⟩

Solution. We can decompose C = C1 ∪ C2 ∪ C3 ∪ C4 (as in the following picture)

Figure 28.2: ∂([0, 1]2)

Let P (x, y) = x2 − y2, Q(x, y) = 2xy. Then the integral,

∫
C
P dx+Qdy =

∫∫
[0,1]2

(2y + 2y) dA (Green’s Theorem)

=

∫ 1

0

∫ 1

0

4y dy dx

= 2

If we try to calculate the integral directly, we will end up getting same
result.

Area of a closed Region. Let R (simply connected) be a closed region and C = ∂R be the
curve enclosing the region. Using Green’s Theorem we get,

Area(R) =

∫
R
dA =

∫
C
xdy =

∫
C
−ydx =

∫
C

xdy − ydx
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Example 28.1.2 (Area inside the ellipse: x2

a2 + y2

b2 = 1)

Solution. Parametrization of ellipse x = a cos t, y = b sin t where t ∈ [0, 2π). Using the above
application of Green’s Theorem we can write,

Area =

∫
C
xdy = ab

∫ 2π

0

cos2 tdt = πab

Theorem 28.1.2 (Independence of path)

Let F⃗ be a C1 vector field on R2 such that

∫
C
F⃗ · dr⃗ is independent of path. Then F⃗ is

conservative over an open and simply connected domain.

Proof. Let D be an open and connected domain. F⃗ = ⟨P,Q⟩ is defined over D. Also let P0 = ⟨x0, y0⟩
be a fixed point in the domain D and P1 = ⟨x, y⟩ ∈ D be a variable point. C be a smooth curve
joining P0 and P1. Define

φ(x, y) =

∫
C
F⃗ · dr⃗
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Since, D is open set, so we must get an open ball centered at P1 contained in D. Take a point
P ′
1 = ⟨x1, y⟩ inside that open ball such that x1 < x. Let C1 be a smooth curve from P0 to P1 and C2

be a line segment from P ′
1 to P1. So, C1 ∪ C2 defines a smooth curve from P0 to P1.

P ′
1(x1, y) P1(x, y)

P0(x0, y0)

C1

C2

C

As

∫
C
F⃗ · dr⃗ is path independent We can write,

φ(x, y) =

∫
C1

F⃗ · dr⃗ +
∫
C2

F⃗ · dr⃗

Now we take the partial derivative of both sides of this equation with respect to x. The first integral
does not depend on the variable x since C1 is the path from P0(x0, y0, z0) to P ′

1(x1, y, z) and so
partial differentiating this line integral with respect to x is zero.

∂φ

∂x
=

∂

∂x

(∫
C1

F⃗ · dr⃗ +
∫
C2

F⃗ · dr⃗
)

=
∂

∂x

(∫
C1

F⃗ · dr⃗
)

︸ ︷︷ ︸
=0

+
∂

∂x

(∫
C2

F⃗ · dr⃗
)

Also, C2 can be parametrized as r(t) = ⟨t, y⟩ where t ∈ [x1, x]. So,

∂

∂x

(∫
C2

F⃗ · dr⃗
)

=
∂

∂x

(∫ x

x1

⟨P (t, y), Q(t, y)⟩ · ⟨1, 0⟩dt
)

=
∂

∂x

(∫ x

x1

P (t, y) dt

)
= P (x, y) [Fundamental Theorem of calculus]

Similarly, we can show that, ∂φ
∂y = Q(x, y). And hence, ∇φ = F⃗ (x, y). We can define φ as the

potential of F⃗ .

Theorem 28.1.3

Let D be a simply connected domain in R2 and F⃗ is a C1 vector field on D. Then F⃗ is
conservative iff ∇× F⃗ = 0 on D.

Proof. (⇒) This direction is trivial.

(⇐) From Green’s Theorem we can say that

∫
C
F⃗ · dr⃗ = 0 over all closed curve C. For any two point

p0, p1 ∈ D if γ1, γ2 : [0, 1] → D are two smooth curves joining p0 and p1. (i.e., γ1(0) = γ2(0) = p0 and

γ1(1) = γ2(1) = p1) then γ1 ∪ γ2(1− t) is a closed curve. So,

∫
γ1

F⃗ · dr⃗ =
∫
γ2

F⃗ · dr⃗. Which means

the integral is path independent. Using the previous theorem we can say, F⃗ is conservative on D.
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28.2 Gauss Divergence Theorem

Definition 28.2.1 ▶ Divergence of a vector field

Given a vector field F⃗ = (f1, · · · , fn) : Rn → Rn, the “Divergence” of F⃗ is,

div(F ) =

n∑
i=1

∂fi
∂xi

≡ ∇ · F⃗

Theorem 28.2.1 (Gauss Divergence Theorem)

Let D ⊆ R3 a solid domain, ∂D be an oriented surface. Let F⃗ = ⟨P,Q,R⟩ be a C1 vector
field on an open surface containing D ∪ ∂D. Then,∫

∂D=S
F⃗ · dS⃗︸ ︷︷ ︸

surface integral

=

∫
D
∇ · F⃗ dV︸ ︷︷ ︸

volume integral

Just like FTC, the behavior over a volume is fully determined by the behavior at the boundary.
Proof of this theorem is beyond our reach. But we can see the proof for simple cases.

Proof. (For a simple case) Consider D = {(x, y, z) | φ1(x, y) ≤ z ≤ φ2(x, y), (x, y) ∈ [a, b]× [c, d]}.
(Exercise.) Complete the proof!

Example 28.2.1

F (x, y, z) =
〈
x+ y, z2, x2

〉
and S be the hemisphere x2 + y2 + z2 = 1, z > 0. Compute,∫

S

F⃗ dS⃗

Solution. Notice that S is open surface. We want to use Gauss Theorem 28.2.1. So we need a close
surface. Let S1 be the surface x2 + y2 ≤ 1. Then S ⊔ S1 is a closed surface.

∫
S⊔S1

F⃗ · dS⃗ =

∫
x2+y2,z2≤1,z≥0

∇ · F⃗ dV

=

∫
x2+y2,z2≤1,z≥0

dV

=
2π

3

Parametrization of the surface S1 =
{
(x, y, 0) | x2 + y2 = 1

}
. So, rx × ry = ⟨1, 0, 0⟩ × ⟨0, 1, 0⟩.

∫
S1

F⃗ · dS⃗ =

∫
x2+y2≤1

〈
x+ y, z2, x2

〉
· ⟨0, 0, 1⟩dA =

∫
x2+y2≤1

x2 dA

=

∫ 2π

0

∫ 1

0

r3 cos2 θ dr dθ =
π

4

⇒
∫
S

F⃗ · dS⃗ =
11π

12



28.3. STOKES’ THEOREM 5

28.3 Stokes’ Theorem

Theorem 28.3.1 (Stokes’ Theorem)

Let C be a C1 curve enclosing an oriented surface S in R3. Let, F⃗ = ⟨P,Q,R⟩ be a C1 vector
field on an open set containing S. Then,∫

C
F⃗ · dr⃗ =

∫
S

(
∇× F⃗

)
· dS⃗

Here orientation of S and direction of C is same.

Example 28.3.1

Compute

∫
C
F⃗ · dr⃗, where C : x2 + y2 = 9, z = 4 and F⃗ = ⟨−y, x, xyz⟩.

Solution. ∇ × F⃗ = ⟨xz,−yz,, 2⟩. By convention, we should assume direction of C is along
counter-clockwise direction. So, The normal vector of S is along negative z axis. So, required
integral,

∫
C
F⃗ · dr⃗ =

∫
S
(∇× F⃗ ) · dS⃗

=

∫
x2+y2≤1,z=4

(∇× F⃗ ) · ⟨0, 0,−1⟩dA

= −2

∫
x2+y2≤1,z=4

dA

= −18π

Stoke’s Theorem is the R3−analogue of Green’s Theorem 28.1.1. If we take the third component of
F⃗ to be zero, i.e., R = 0, then Stoke’s Theorem 28.3.1 gives us back Green’s Theorem 28.1.1.

There is a generalized version of Stokes’ theorem. Just for information the theorem is stated
below.
• If Ω is an oriented n-manifold (with boundary) and ω is a differential form ((n− 1) form).
Then integral of ω over the boundary ∂Ω of the manifold Ω is given by,∫

∂Ω

ω =

∫
Ω

dω


	Lecture 28
	Green's Theorem
	Gauss Divergence Theorem
	Stokes' Theorem


