Lecture 28

28.1 Green’s Theorem

Theorem 28.1.1 (R2 version of Green's Theorem)

Let R C R? be a simply connected domain with boundary curve C where parametrization is
taken in anti-clockwise direction. Let F' = (P, Q) be a C! vector field on R, then
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Proof .
(for Simple region)
Let R ={(z,y) |a <z <b,po1(x) <y < o)}

be a simple region. Here C =C; U Vo U C2 U Vg
is the curve bounding the region along anti-
clockwise direction (as shown in Figure 28.1). 2 wle)
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The curves Cq,Cs, V1, Vo can be explicitly written as,

Vi ={(a,t) | p1(a) <t < p2(a)}
Ci={(z,¢p1(z)) |a <z <b}
Vo ={(a,t) | ¢1(b) <t < pa(b)}
Co={(z,p2(z)) |a <z < b}

We compute the integrals for P over these curves and obtain,

B da(t) .,
/v1 Pdx = /vl P(x(t),y(t)) T dt =0

/CPd:z:/abP(t,gol(t))dt
/CPd:z:/abP(t,goz(t))dt
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By similar mechanism we can show [ Qdy = B dA. The rest follows from here. O
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Example 28.1.1

Let C be the boundary of [0,1]?, i.e., 8[0,1] x [0,1] = C. Evaluate

/<$2 - y27 2$y>
c

Solution. We can decompose C = C; UCy UC3 UCy (as in the following picture)
Let P(z,y) = 22 — y?,Q(x,y) = 2xy. Then the integral,

/ Pdzr+Qdy = // (2y + 2y)dA (Green’s Theorem)
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If we try to calculate the integral directly, we will end up getting same Figure 28.2: 9([0,1]%)

result.

Area of a closed Region. Let R (simply connected) be a closed region and C = R be the
curve enclosing the region. Using Green’s Theorem we get,

dy — yd
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Example 28.1.2 (Area inside the ellipse: i—z + g—z =1)

Solution. Parametrization of ellipse x = acost,y = bsint where t € [0,27). Using the above
application of Green’s Theorem we can write,

2w
Area = / xdy = ab/ cos? tdt = mab
c 0

Theorem 28.1.2 (Independence of path)

Let F be a C! vector field on R? such that /ﬁ - dr’ is independent of path. Then Fis

¢
conservative over an open and simply connected domain.

Proof. Let D be an open and connected domain. F = (P, Q) is defined over D. Also let Py = (zo, yo)
be a fixed point in the domain D and P; = (z,y) € D be a variable point. C be a smooth curve
joining Py and P;. Define
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Since, D is open set, so we must get an open ball centered at P; contained in D. Take a point
P| = (z1,y) inside that open ball such that 21 < z. Let C; be a smooth curve from Py to P; and Co
be a line segment from P; to P;. So, C; U Cy defines a smooth curve from Py to P;.

c
. Pi(z1,y) ————— Pi(z,y)
1

Po(xo,y0)

As / F.dris path independent We can write,
c

olx,y) = ﬁ-df'+/ F.dF
C1 C2

Now we take the partial derivative of both sides of this equation with respect to x. The first integral
does not depend on the variable z since C; is the path from Py(zg,yo,20) to Pj(x1,y,2) and so
partial differentiating this line integral with respect to z is zero.

dy 0 - -
oz F.dF F.dr
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Also, C can be parametrized as r(t) = (t,y) where t € [z, z]. So,

g ([ Far)= 3 ([ ot -a.oa)
:aax(/:P(t,y) dt)
)

= P(x,y [Fundamental Theorem of calculus|

Similarly, we can show that, g—‘; = Q(z,y). And hence, Vy = ﬁ(m,y) We can define ¢ as the
potential of F'. O

Theorem 28.1.3

Let D be a simply connected domain in R2 and F is a C! vector field on D. Then F is
conservative iff V. X F' =0 on D.

Proof. (=) This direction is trivial.

(<) From Green’s Theorem we can say that / F - di = 0 over all closed curve C. For any two point
c
po,p1 € D if 41,72 : [0,1] = D are two smooth curves joining py and p;. (i.e., y1(0) = v2(0) = po and

71(1) = v2(1) = p1) then v1 U~a(1 — ) is a closed curve. So, F.df = F - d7. Which means
Y1 Y2
the integral is path independent. Using the previous theorem we can say, F' is conservative on D. [



28.2 Gauss Divergence Theorem

Definition 28.2.1 » Divergence of a vector field }

Given a vector field F' = (f1,-+, fn) : R® = R", the “Divergence” of F is,

div(F Z gi} =

Theorem 28.2.1 (Gauss Divergence Theorem)

Let D C R3 a solid domain, D be an oriented surface. Let F = (P,Q, R) be a C! vector
field on an open surface containing D U dD. Then,

/ ﬁ~d§:/v-ﬁdv
OD=S D

surface integral volume integral

Just like FTC, the behavior over a volume is fully determined by the behavior at the boundary.
Proof of this theorem is beyond our reach. But we can see the proof for simple cases.

Proof. (For a simple case) Consider D = {(z,y, 2) | ¢1(z,y) < z < pa(x,y), (z,y) € [a,b] x [c,d]}.
(Exercise.) Complete the proof! O

Example 28.2.1
F(z,y,z) = <x + v, 22,x2> and S be the hemisphere 2 + 3% 4+ 22 = 1,2 > 0. Compute,

/ﬁdE‘
S

Solution. Notice that S is open surface. We want to use Gauss Theorem 28.2.1. So we need a close
surface. Let S; be the surface 22 + 32 < 1. Then S U S; is a closed surface.

/ F.d§= / v.Fdv
SuSy 22492 22<1,2>0

_ / av
x2492,22<1,2>0
2

3

Parametrization of the surface Sy = {(z,y,0) | 2> + y> = 1}. So, r, x 7, = (1,0,0) x (0,1,0).

/ ﬁ~d§:/ <x+y,22,x2>~<0,0,1>dA:/ z2dA
S1 x24y2<1 z24y2<1

27 1 T
:/ / r3cos?0drdf = =
o 4

:»/F d§:11”



28.3. STOKES’ THEOREM 5

28.3 Stokes’ Theorem

Theorem 28.3.1 (Stokes’ Theorem)

Let C be a C' curve enclosing an oriented surface S in R?. Let, F= (P,Q, R) be a C! vector
field on an open set containing S. Then,

/Cﬁ-dF:/S(Vxﬁ)-dﬁ

Here orientation of S and direction of C is same.
Example 28.3.1

Compute /f -d7, where C: 22+ y*> =9,z =4 and F = (—y, z, zyz).
c

Solution. V X F = (xz,—yz,,2). By convention, we should assume direction of C is along
counter-clockwise direction. So, The normal vector of S is along negative z axis. So, required
integral,

/ﬁ~dF:/(fo)~d§
C S
:/ (V x F)-(0,0,—1)dA
z24+y2<1,2=4

—2/ dA
249y2<1,2=4

= —187

Stoke’s Theorem is the R3—analogue of Green’s Theorem 28.1.1. If we take the third component of
F' to be zero, i.e., R =0, then Stoke’s Theorem 28.3.1 gives us back Green’s Theorem 28.1.1.

There is a generalized version of Stokes’ theorem. Just for information the theorem is stated
below.

o If Q) is an oriented n-manifold (with boundary) and w is a differential form ((n — 1) form).
Then integral of w over the boundary 92 of the manifold € is given by,

/wz/dw
le) Q
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