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Lecture 1

1.1 Introduction

Our objective is to study functions f : C → C. We know that as metric spaces C and R2 are
isometric, with the natural map (x, y) 7→ x+ iy being an isometry, but then what is the difference
between analysis in R2 and analysis in C? The difference arises because C is a field while R2 is not
a field, thus we have a notion of multiplication and division in the complex plane.

Before going into further details we recall some of the obvious observations that one can make,

1. (Triangle inequality). ||z1| − |z2|| ≤ |z1 − z2|.

2. |z| ≥ max{|x|, |y|} where z = x+ iy.

3. {zn}n∈N ⊆ C is a Cauchy sequence if and only if {(xn, yn)}n∈N ⊆ R2 is a Cauchy sequence,
which is equivalent to {xn}n∈N and {yn}n∈N are Cauchy sequences.

4. Let f : C→ C be a function. Then f is continuous (or limit exists) at a point z0 = x0 + iy0 if
and only if f : R2 → R2 viewed as a function from the real plane to the real plane is continuous
(or limit exists) at (x0, y0).

We haven’t yet clarified how the analysis of C differs from the analysis of R2, the fact that C is a

field gives us that f(z)−f(z0)
z−z0

∈ C for all z ̸= z0. Thus we can define the derivative of f : C→ C at

z0 as the complex number obtained by taking the limit limz→z0
f(z)−f(z0)

z−z0
(provided the limit exists).

Thus the derivative of f : C→ C at z0 ∈ C is a complex number, while the derivative of f : R2 → R2

(that is, the total derivative) is a 2× 2 matrix.

This raises the following question let f = u+ iv, then if we view f = (u, v) : R2 → R2 we know

Jf (x0, y0) = Df(x0, y0) =

[
ux(x0, y0) uy(x0, y0)
vx(x0, y0) vy(x0, y0)

]
,

is there any relation between f ′(z0) (if it exists) and Jf (x0, y0)?

Homewok. (another representation of C). Let

M =

{(
x −y
y x

)
| x, y ∈ R

}
⊆ M2(R) (1.1)

Show that M is a field under matrix multiplication and is in fact isomorphic to C.

The above assignment suggests there must be some representation of f ′(z0) in terms of the Jacobian
matrix Jf (x0, y0), indeed there is some relation which we will discuss in a while.

Notation. Br(z0) = {z ∈ C | |z − z0| < r}.
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1.2 Holomorphic versus Differentiable Functions.

Definition 1.1.1 ▶ Holomorphic Functions.

Let O be an open subset of C, and let f : O → C be a function and z0 ∈ O. We say that f is
C-differentiable at z0 or holomorphic at z0 if

lim
z→z0

f(z)− f(z0)

z − z0
=: f ′(z0) exists.

And we will say f is holomorphic on O if f is holomorphic at every point z ∈ O. We will
denote by

Hol(O) = {f : O → C | f is holomorphic}.

Then Hol(O) forms an algebra over C.

Lemma 1.1.1 (Some Immediate Observations.)

Let f, g : O → C be holomorphic at z0, then

1. f is continuous at z0.

2. (αf + g)′(z0) = αf ′(z0) + g′(z0) for all α ∈ C.

Example 1.1.1

Some examples of holomorphic functions are f(z) = z, f(z) = constant and f(z) = z2, while
f(z) = z̄ is not a holomorphic function. Note that in R2 the function f(z) = z̄ corresponds to

the function f(u, v) = (u,−v). But then we get that Df(u, v) =

[
1 0
0 −1

]
/∈ M (where M is

defined in equation 1.1). If we now consider the function f(z) = z2, then in R2 it corresponds

to the function f(x, y) = (x2 − y2, 2xy) then Jf (x, y) =

[
2x −2y
2y 2x

]
∈ M .

The above example gives us the motivation to answer the problem we had raised earlier: how are the
complex derivative and the Jacobian matrix related?

1.2 Holomorphic versus Differentiable Functions.

For this discussion we will let f = u+ iv : O → C, let z0 = x0 + iy0. Suppose f is holomorphic at z0,
and let α = a+ ib = f ′(z0). We then define the function for all z ∈ Br(z0)

R(z) = f(z)− f(z0)− α(z − z0)

= [u(z)− u(z0)− a(x− x0) + b(y − y0)]︸ ︷︷ ︸
R1(z)

+i [v(z)− v(z0)− b(x− x0)− a(y − y0)]︸ ︷︷ ︸
R2(z)

.

Now recall that f : R2 → R2 is differentiable at (x0, y0) if and only if

R(x, y)

∥(x, y)− (x0, y0)∥
→ 0 as (x, y) → (x0, y0).

But we have
R(z)

|z − z0|
=

R1(z)

|z − z0|
+ i

R(z)

|z − z0|
,

and we also know that f is holomorphic at z0 hence we get that

lim
z→z0

R(z)

|z − z0|
= 0 ⇐⇒ lim

z→z0

R1(z)

|z − z0|
= lim

z→z0

R2(z)

|z − z0|
= 0.

2



Lecture 1

Thus it is equivalent to saying that u, v : O → R are differentiable at (x0, y0) and we further have

a = ux = vy

b = vx = −uy.

Theorem 1.2.1 (Cauchy Riemann Equations) Let f := u+ iv : O → C be a function
and z0 ∈ O. Then f is holomorphic at z0 if and only if u, v : O → R is differentiable at z0 and
ux = vy and uy = −vx. These are called the Cauchy Riemann Equations, thus we have

ux = vy, uy = −vx and f ′(z0) = ux(z0) + ivx(z0).
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1.2 Holomorphic versus Differentiable Functions.

4



Lecture 2

2.1 Complex partial differential operators

Definition 2.1.1 ▶ Complex Ck functions

Let O ⊂ R2 be open. We say f : O → C is in C1(O) if the partial derivatives ∂f
∂x and ∂f

∂y are

continuous on O. Similarly, we say f ∈ Ck(O) if all the partial derivatives of order ≤ k are
continuous on O, that is,

Ck(O) =

{
f : O → C

∣∣∣∣ ∂tf

∂xi∂yj
is continuous on O for all i+ j = t and 1 ≤ t ≤ k

}
.

We denote continuous functions as C0(O) or C(O). Note that the notion of continuity is independent
of whether f is treated as a function f : R2 → R2 or f : C→ C.

Definition 2.1.2 ▶ Complex partial derivatives

Let f = u+ iv : O → C be in C1(O). Then we define the complex partial derivatives of
f as,

∂f =
∂f

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
(u+ iv)

and ∂̄f =
∂f

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

Note that ∂f and ∂̄f exist when the partials ∂f
∂x and ∂f

∂y exist. We don’t need the continuity of the
partials to define the complex partial derivatives. In practice however, we will almost always end up
working with C1 functions. Consider the following example,

Example 2.1.1

Let f(z) = z. Then,

∂f =
∂z

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
(x+ iy)

=
1

2
(1− i2) = 1

Also for g(z) = z̄,

∂g =
∂z̄

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
(x− iy)
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2.2 Harmonic functions

=
1

2
(1 + i2) = 0

We collect some properties of these differential operators in the following lemma. The proofs follows
from definition.

Lemma 2.1.1

Let f, g ∈ C1(O) and α, β ∈ C be scalars. Then show that,

1. ∂(αf + βg) = α∂f + β∂g.

2. ∂̄(αf + βg) = α∂̄f + β∂̄g.

3. ∂(fg) = f∂g + g∂f .

4. ∂̄(fg) = f∂̄g + g∂̄f .

Remark. For f = u+ iv ∈ C1(O), we have,

¯∂f =
∂f

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

=
1

2
(ux − vy) +

i

2
(vx + uy)

so it is immediate that, f ∈ Hol(O) if and only if ¯∂f = 0 on O. Again, for f ∈ Hol(O), ∂f = f ′ on
O. We will see that these differential operators will have roles analogous to the operators ∂x and ∂y
over R2.

Theorem 2.1.1Let O ⊆ C be a open and connected, and f = u+ iv ∈ Hol(O).

1. If f ′ = 0 then f is constant on O.

2. If f(O) ⊆ R then f is constant on O.

Proof. 1. Let f ′ = 0 on O. Then ux = 0 and vx = 0. So u and v are x−free. Also, by the
Cauchy-Riemann equations, uy = vx = 0 and vy = −ux = 0. So u and v are y−free. So, by
connectedness of O, u and v are constant. Hence, f is constant on O.

2. Let f(O) ⊆ R. Then v is constant. So vx = vy = 0. And by the Cauchy-Riemann equations,
ux = vy = 0 and uy = −vx = 0. Sou is constant. Hence, f is constant on O.

This indicates that the notion of holomorphicity is quite fundamentally different from that of the
R2-derivative, and any non-trivial examples requires the functions to be complex valued.

2.2 Harmonic functions

This is a very interesting class of functions, frequently encountered in the theory of PDEs and in
complex analysis. These are precisely the solution to the PDE ∆f = 0, where ∆ is the appropriate
Laplacian operator. For functions over R2, this equation becomes

∆f = fxx + fyy = 0

Let, f = u+ iv ∈ Hol(O) ∩ C2(O). Then the Cauchy-Riemann equations are

ux = vy and uy = −vx

6



Lecture 2

Now, we take the partial derivative of the first equation with respect to x, and that of the second
one with respect to y. As the functions u, v ∈ C2(O), the mixed partial derivatives are independent
of the order of integration. Thus,

uxx = vyx = vxy and uyy = −vxy = −vyx

Adding these two equations gives uxx + uyy = 0, that is, u is harmonic. Similarly, vxx + vyy = 0 and
therefore v is also harmonic. Henceforth, the Laplacian Operator will be defined as

∆ ≡ ∂2f

∂x2
+

∂2f

∂y2

Definition 2.2.1 ▶ Harmonic function

A function f ∈ C2(O), where O ⊆ R, is called harmonic if ∆f = 0.

Thus the real and imaginary parts of any holomorphic function are harmonic. This raises the
obvious question as to whether the converse is true. Is every harmonic function the real part of
some holomorphic function? The answer depends on the domain of definition of the functions. In
sufficiently nice domains, this is indeed the case. However, there are subsets of the complex plane
where this cannot be done. Answering this question, particularly for slightly more general situation
∆f = Ef , takes us to the theory of partial differential equations. We will develop some machinery
and then hopefully come back to this question.

2.3 Integration of complex functions

We already have a notion of line integrals over R2. Naturally, the question arises, whether integration
in C can be defined in an analogous manner. That is the journey we embark upon now.

Line integrals

Definition 2.3.1 ▶ Parametrized curve

A parametrized curve is a continuous function, often denoted by γ, z : [a, b] → C. We will
separate the real and imaginary parts as γ(t) = γ1(t) + iγ2(t) or as or z(t) = x(t) + iy(t).

• We say γ is closed if γ(a) = γ(b).

• γ is said to be simple closed if γ is closed and one-one on [a, b).

Definition 2.3.2

A function γ : [a, b] → C is said to be in C1[a, b] if both Re(γ) and Im(γ) are in C1[a, b].

We can talk about integration of a continuous over any curve, in a manner analogous to the definition
of Riemann Integration. However, in most examples, integration will be carried out on C1 curves,
in which case, (2.1) holds. So strictly speaking, Definition - 2.3.4 is a consequence rather than a
definition. More details regarding the same can be found in the next lecture.

Definition 2.3.3 ▶ Integration of a curve

Let γ : [a, b] → C be a curve. Then we define the integral of γ as,∫ b

a

γ(t) dt =

∫ b

a

γ1(t) dt+ i

∫ b

a

γ2(t) dt

7



2.3 Integration of complex functions

Definition 2.3.4 ▶ Contour integral

Let γ : [a, b] → C be a C1 curve and f ∈ C ({γ(t) : t ∈ [a, b]}) be a function. Then we define
the line integral or contour integral of f along γ as,∫

γ

f =

∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt (2.1)

The integral in the right hand side is an ordinary line integral over R2. However, for this to be a
valid definition, it must be defined irrespective of the parametrization γ. This issue is addressed in
the next lecture. For now, we look at some instructive examples.

Example 2.3.1

We now compute the integral of f(z) = z2 over an arc the circle ∂Br(0) of radius r > 0
centered at 0. An arc of this circle can be parametrized as γ(t) = reit for 0 ≤ a ≤ t ≤ b ≤ 2π.
Then, ∫

γ

f =

∫ b

a

f(γ(t))γ′(t) dt

=

∫ b

a

(reit)2(ireit) dt

= r3
∫ b

a

e3it dt

Splitting the integral
∫ b

a
e3it dt into real and imaginary parts, we get,∫ b

a

e3it dt =

∫ b

a

cos(3t) dt+ i

∫ b

a

sin(3t) dt

=
sin(3t)

3

∣∣∣∣b
a

+ i −cos(3t)

3

∣∣∣∣b
a

=
e3it

3

∣∣∣∣b
a

=⇒
∫
γ

f =
r3

3

(
e3ib − e3ia

)
{
= 0 if b− a = 2nπ

3 for any n ∈ Z
̸= 0 otherwise

Consider a polynomial p(z) = a0 + a1z + · · ·+ anz
n. It is an immediate observation that the integral∫

∂Br(0)
p dz is always zero for any r > 0. This somehow indicates to the fact that

∫
∂Br(0)

f dz = 0

for some other “good” functions f , which exhibit a polynomial like behavior. The obvious guesses
are functions which a power series expansion around a neighbourhood, i.e., analytic functions. This
and much more will turn out to be true, but for now, we look at some other examples.

8



Lecture 2

Example 2.3.2

Let γ be the line joining 1 and 1+2i, which can be parametrized as γ(t) = 1+2it for 0 ≤ t ≤ 1.
Then, we compute the integral of f(z) = z2 over γ as,∫

γ

f =

∫ 1

0

(1 + 2it)2(2i) dt

=
2

3
+ 4i ̸= 0

Example 2.3.3

Let r > 0 and f : C \ {0} → C be the fucntion f(z) = 1
z . Note that, f is continuous on

∂Br(0) but f ̸∈ Hol(Br(0)). We compute the integral of f over the circle ∂Br(0) with our
previous parameterization as,∫

∂Br(0)

1

z
dz =

∫ 2π

0

1

reit
(ireit) dt

=

∫ 2π

0

i dt

= 2πi ̸= 0

Writing differently,
1

2πi

∫
∂Br(0)

1

z
dz = 1

If we now increase the speed of parameterization of ∂Br(0) to n, i.e. γ(t) = reint for 0 ≤ t ≤ 2π.
Then we get

1

2πi

∫
∂Br(0)

1

z
dz = n

The integer n in the above example is called the winding number of the curve γ around 0, which is
a topological invariant and is the starting point of index theory.

9



2.3 Integration of complex functions
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Lecture 3

3.1 More on contour integration

We briefly discuss the more fundamental development of integrals of complex functions over curves
in the complex plane. Let γ : [a, b] → O be a smooth curve in C. Although rectifiability of the curve
is a sufficient assumption for the development of the theory, we assume smoothness for the sake of
brevity.
Let P : a = t0 < t1 · · · < tn = b be a partition of [a, b]. Consider the points zj = γ(tj), 0 ≤ j ≤ n and
let γj = γ([tj−1, tj ]) for 1 ≤ j ≤ n. We pick tags ζj ∈ γj to get the tag set TP = {ζj}n1 . Then, we
define the mesh of the partition of P with respect to the curve γ to be

∥P∥γ = max{|zj − zj−1| : 1 ≤ j ≤ n}

The Riemann sum of the function f with respect to the partition P and the curve γ is defined to be

R(f, γ;P, TP ) =

n∑
j=1

f(ζj)(zj − zj−1)

We say that the function f is integrable over γ if the limit of R exists as ∥P∥γ → 0. In that case, we
define ∫

γ

f dz = lim
∥P∥γ→0

R(f, γ;P, TP )

Finally, we have the following result which justifies the preliminary discussion of the last lecture.

Theorem 3.1.1If f ∈ C(O), f is integrable over any smooth curve γ contained in O and∫
γ

f dz =

∫ b

a

f(γ(t))γ′(t) dt

We now discuss how contour integration of functions in C relate to integration of scalar fields in R2.
Let γ(t) = γ1(t) + iγ2(t) be a smooth curve in C and f = u+ iv. Then,

f(γ(t))γ′(t) = (u(γ(t)) + iv(γ(t)))(γ′
1(t) + iγ′

2(t))

= ((u ◦ γ)(t)γ′
1(t)− (v ◦ γ)(t)γ′

2(t)) + i((v ◦ γ)(t)γ′
1(t) + (u ◦ γ)(t)γ′

2(t))

=⇒
∫
γ

f dz =

∫ b

a

((u ◦ γ)(t)γ′
1(t)− (v ◦ γ)(t)γ′

2(t)) dt+ i

∫ b

a

((v ◦ γ)(t)γ′
1(t) + (u ◦ γ)(t)γ′

2(t)) dt

=⇒
∫
γ

f dz =

(∫
γ

udx− v dy

)
+ i

(∫
γ

v dx+ udy

)

11



3.1 More on contour integration

We can slightly abuse the notation to write the identity above suggestively as:∫
γ

f dz =

∫
γ

f dx+ i

∫
γ

f dy =

∫
γ

(f dx+ if dy)

Exercise: Show that for any smooth curve γ, the operation of integrating functions over γ is linear,
i.e,

∫
γ
is a linear functional on the space of all functions that are integrable over γ.

Definition 3.1.1

For γ : [a, b] → C a smooth curve, we define the length of γ to be

ℓ(γ) =

∫ b

a

|γ′(t)|dt

Definition 3.1.2

A curve γ : [a, b] → C is said to be piecewise smooth if there is a partition P : a = t0 <
t1 · · · tn = b of [a, b] such that γ

∣∣
[tj−1,tj ]

is smooth, for all 1 ≤ j ≤ n.

The preceding constructions are easily generalised to piecewise smooth curves, simply by breaking
up the curve into its smooth parts and integrating separately over each such part and adding the
results. We leave it as an easy exercise for the reader to formulate the exact expressions.

Exercise: If −γ denotes the curve t 7→ γ(a+ b− t) for γ : [a, b] → C a (piecewise) smooth curve,
then ∫

−γ

f dz = −
∫
γ

f dz

Theorem 3.1.2Let γ : [a, b] → C be a piecewise smooth curve.

(1)
∣∣∣∫ b

a
γ(t) dt

∣∣∣ ≤ ∫ b

a
|γ(t)|dt

(2) for all f that is continuous on the range of γ,∣∣∣∣∫
γ

f dz

∣∣∣∣ ≤ sup
t∈[a,b]

|f(γ(t))|ℓ(γ)

Proof. (1) Let α =
∫ b

a
γ(t) dt, and assume without loss of generality that α ̸= 0. Consider β = α

|α| ,

|α| = β

∫ b

a

γ(t) dt = Re

{∫ b

a

βγ(t) dt

}
≤
∫ b

a

|Re{βγ(t)}|dt

=⇒

∣∣∣∣∣
∫ b

a

γ(t) dt

∣∣∣∣∣ ≤
∫ b

a

|βγ(t)|dt =
∫ b

a

|γ(t)|dt

Note that we only require γ to be a (continuous) curve for this part.

(2) We have, ∣∣∣∣∫
γ

f dz

∣∣∣∣ =
∣∣∣∣∣
∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(γ(t))||γ′(t)|dt (by the first part)

=⇒
∣∣∣∣∫

γ

f dz

∣∣∣∣ ≤ sup
t∈[a,b]

|f(γ(t))|ℓ(γ)

as was to be shown.

12



Lecture 3

The following result is another chain rule, applicable for functions evaluated over curves.

Theorem 3.1.3Let f ∈ Hol(O), γ : [a, b] → O a C1 curve. Then,

(f ◦ γ)′(t) = f ′(γ(t))γ′(t)

for all t ∈ (a, b).

Proof. Let f = u+ iv and γ(t) = x(t) + iy(t). Then,

(f ◦ γ)′(t) = d

dt
(u(x(t), y(t)) + iv(x(t), y(t)))

=

(
ux

dx

dt
+ uy

dy

dt

)
+ i

(
vx

dx

dt
+ vy

dy

dt

)
=

(
ux

dx

dt
− vx

dy

dt

)
+ i

(
vx

dx

dt
+ ux

dy

dt

)
(Cauchy-Riemann equations)

= (ux + ivx)

(
dx

dt
+ i

dy

dt

)
=⇒ (f ◦ γ)′(t) = f ′(γ(t))γ′(t)

Definition 3.1.3

We say that f ∈ Hol(O) has a primitive if there is g ∈ Hol(O) such that g′ = f .

Theorem 3.1.4Let f ∈ Hol(O) and γ : [a, b] → O be a smooth curve. Assume f ′ is continuous
in O. Then, ∫

γ

f ′ dz = f(γ(b))− f(γ(a))

Proof. We have, ∫
γ

f ′ dz =

∫ b

a

f ′(γ(t))γ′(t) dt =

∫ b

a

(f ◦ γ)′(t) dt

We now split the derivative (f ◦ γ)′ into its real and imaginary parts, and use the fundamental
theorem of calculus to conclude what was required.

Corollary

Let γ : [a, b] → C be a closed smooth curve and f ∈ Hol(O), where γ([a, b]) ⊆ O. Then,∫
γ

f ′ dz = 0

This corollary can be used to show that certain functions cannot admit any primitives in a given
domain, as in the following example.

Example 3.1.1

Recall that
1

2πi

∫
∂Br(0)

1

z
dz = 1

for all r > 0. Hence, even though z 7→ 1
z is holomorphic on C \ {0}, it does not admit any

primitive in this domain!

13
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Lecture 4

4.1 Cauchy Integral Theorem

Last day we have seen, if a function have primitive over a simply connected domain, its’ integral over
the boundary of that region is 0. We also noted for a function 1

z , integration (countour integral) over
∂Br(0) is not zero. So, it can’t have a primitive over the region C \ {0}. The function is Holomorphic
on any open set do not contain 0. So the natural question arises,‘Is it possible that, this function
has primitive in some open set do not contain 0?’ To answer this question we need ‘Cauchy Integral
Theorem’, which is stated as following.

Theorem 4.1.1 (Cauchy(Goursat) Integral Theorem) Let, f ∈ Hol(O), where O is
simply connected domain. Then,

∫
γ
fdz = 0 for all piece-wise smooth closed curve γ ⊂ O.

To prove this we need to develop more techniques in complex analysis. Rather, we will prove a weak
version of the above theorem.

Theorem 4.1.2 (Cauchy Integral Theorem ∆ version) Let, γ is a triangle (curve
including sides of the triangle T ) and int(T ) ∪ T ⊆ O. Then for all f ∈ Hol(O),∫

T

fdx = 0

T
(0)
1

T
(0)
2

T
(0)
3

T
(0)
1

T
(0)
4

Proof. Lat, T 0 b the curve T with anticlockwise direction. Take
the middle point of each side and joint them to get 4 triangles (as
shown in the picture) with an orientation (shown in the picture).

Call these triangles T
(0)
j for j = 1, · · · , 4.

Let, I =
∫
T (0) fdz . From the above partition we can say,

I =

∫
T (0)

fdz =

4∑
j=1

∫
T

(0)
j

fdz

|I| ≤
4∑

j=1

∣∣∣∣∣
∫
T

(0)
j

fdz

∣∣∣∣∣ ≤ 4

∣∣∣∣∣
∫
T

(0)
i

fdz

∣∣∣∣∣
The last inequality holds for some i ∈ {1, 2, 3, 4}. Now call this

triangle T
(0)
i := T (1). We carry out the calculations for i = 1, · · · , n and obtain 1

4n |I| ≤
∣∣∫

T (n) fdz
∣∣.

Set, T (n) := T (n) ∪ int(T (n)). These sets are compact for n ∈ N. Thus, we have a chain of compact
(closed subsets),

T (0) ⊃ T (1) ⊃ · · ·

15



4.1 Cauchy Integral Theorem

with diam T (n) = 1
2n diam T (0) = 1

2n ( length of largest side of T (0)). Using “Cantor intersection
theorem” we get,

∞⋂
n=0

T (n) = {z0} (singleton set)

Using holomorphic property of f at z0 we get, f(z) = f(z0) + f ′(z0)(z − z0) +R(z)(z − z0) holds in
some open ball Bϵ(z0) around z0, where R(z) is continuous on that open ball with limR(z) = 0 as
z → z0. Take n large enough so that T (n) ⊂ Bϵ(z0).∫

T (n)

fdz =

∫
T (n)

[f(z0) + f ′(z0)(z − z0) +R(z)(z − z0)]dz

=

∫
T (n)

R(z)(z − z0)dz

=⇒ 1

4n
|I| ≤

∣∣∣∣∫
T (n)

R(z)(z − z0)dz

∣∣∣∣
Set, ϵn := supz∈T (n) |R(z)|. Note that as n → ∞, ϵn → 0. Also, for z ∈ T (n) we have, |z − z0| ≤
diam T (n) = 1

2n d0 (here, d0 is the length largest side of T (n)). Using triangle inequality we get,

1

4n
|I| ≤

∣∣∣∣∫
T (n)

R(z)(z − z0) dz

∣∣∣∣ ≤ sup
z∈T (n)

|R(z)| × d0
2n

× len(T (n))

=
3d0
4n

· ϵn

|I| ≤ 3dϵn

Just by taking the limit n → ∞ we have I = 0. ■

Corollary. If R is a rectangle R ⊂ O and f ∈ Hol(O), then
∫
R
fdz = 0.

Now we will look at the question, we concerned at the beginning. ‘Does the primitive of 1
z exist in

some domain 0 /∈ Bϵ(z0)?’ The answer is Yes! It should be given by g(z) :=
∫
γz

f dz where γz is
a path from z0 to z. The natural question should be to prove the well define-ness of the above g.
We have to show, no matter what path b/w z and z0 we choose, value of g(z) must be same. If we
have proven main Cauchy theorem then for any two path γ, η (that do not intersect each other
except the end points) joining z and z0, we will consider the concatenated loop γ ∗ η−1. Since the
disc is simply-connected, the region bounded by the loop is also simply connected.Thus the theorem
gives,

∫
γ∗η−1 f dz = 0 which gives

∫
γ
f = −

∫
η−1 f dz =

∫
η
f dz. Thus, the function we defined is

well-defined. Since we haven’t proved the strong Cauchy theorem, we will answer the question with
the help of following theorem.

Theorem 4.1.3 Let, U ⊆ O open and convex. f ∈ Cont(U) and suppose
∫
∂∆

f dz = 0 for all
solid triangles ∆ ⊆ U . Fix z0 ∈ U and let [z0, z] be the line joining z0 to z. Define,

g(z) :=

∫
[z0,z]

f dz

Then g ∈ Hol(U) and g′ = f .

Proof. Fix z̃ ∈ U and Tz be the triangle with sides [z0, z̃], [z̃, z], [z, z0] (with this orientation). By the
property of f we can say,

∫
Tz

f dz = 0. Expanding this integral we get,

⇒
∫
[z0,z̃]

f dz +

∫
[z̃,z]

f dz +

∫
[z,z0]

f dz = 0

⇒ g(z̃)− g(z) =

∫
[z,z̃]

f dz

16



Lecture 4

⇒ g(z)− g(z̃)

z − z̃
=

1

z − z̃

∫
[z,z̃]

f dz

⇒
∣∣∣∣g(z)− g(z̃)

z − z̃
− f(z̃)

∣∣∣∣ = 1

|z − z̃|

∣∣∣∣∣
∫
[z,z̃]

f dz

∣∣∣∣∣
Using continuity of f we can say RHS of the above equation is < ϵ in some open nbd around z̃. Thus,
g is holomorphic at z̃ with f(z̃) = g′(z̃), we can do this for any z̃ ∈ U and hence we are done. ■

Corollary. Let, f ∈ Hol(U) (with U is open and convex). Then there exist g ∈ Hol(U) such
that g′ = f and

∫
γ
f dz = 0 for all smooth piece-wise smooth loop γ in U .

———————————————
“One big theorem at a day”- JDS
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Lecture 5

5.1 Stokes’ and Green’s Theorem

Before developing some more tools required to prove the Cauchy-Goursat theorem, we give some
more motivation towards the result; what happens for C1 functions. Recall Stokes’s theorem for R2:
Consider a simply connected region Ω ⊆ R2 with piecewise smooth, simple and closed boundary ∂Ω.
If f = P dx+Qdy is a C1 1−form on an open set U ⊇ Ω ∪ ∂Ω, then∮

∂Ω

f =

∫∫
Ω

df .

Now, as f = P dx + Qdy, we get df = dP dx + dQdy = Py dy dx + Qx dxdy = (Qx − Py) dxdy.
Hence, ∮

∂Ω

f =

∮
∂Ω

P dx+Qdy =

∫∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dx dy

which is nothing but the statement of Green’s theorem. We now return to C and assume f ∈
Hol(Ω) ∩ C1(Ω), where Ω is a simply connected region as above. Let γ ⊆ Ω be a piecewise smooth,
simple and closed curve. Then, by the discussion of lecture 3,∮

γ

f dz =

(∮
γ

udx− v dy

)
+ i

(∮
γ

v dx+ udy

)
Using Stokes’s theorem on the two integrals on the right we get, [Σγ is the capping surface of γ, in
some lecture we have used the notion of capping surface as int (γ)]∮

γ

f dz =

∫∫
Σγ

(
−∂v

∂x
− ∂u

∂y

)
dxdy + i

∫∫
Σγ

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0

where the final equality follows from the Cauchy-Riemann equations. This is exactly the statement of
the Cauchy-Goursat theorem! We now set to develop the tools needed to remove the C1 restriction,
that is, to show that holomorphic functions must be C1 on “nice” domains.
Exercise: Suppose f ∈ C1(Ω), where Ω is as above. If γ is a curve as above, show that∮

γ

f dz = 2i

∫∫
Σγ

∂f dxdy

holds for all such functions, without assuming holomorphicity.

Recall the result from lecture 3 that
1

2πi

∮
Cr(0)

1

z
= 1

for any r > 0. Changing variables, we get the equality

1

2πi

∮
Cr(z0)

1

z − z0
= 1

for any z0 ∈ C. We now generalise this result to the following very useful theorem.

19



5.2 Cauchy Integral Formula

5.2 Cauchy Integral Formula

Theorem 5.2.1 (Cauchy Integral Formula) Let f ∈ Hol(O) and C ⊆ O be a circle such
that D = C ∪ ΣC is in O. Then, for all z ∈ ΣC,

1

2πi

∮
C

f(ζ)

ζ − z
dζ = f(z).

Remark. Note that if z ∈ O \D, by Theorem 4.1,

1

2πi

∮
C

f(ζ)

ζ − z
dζ = 0.

z

γ4

γ1

γ2

γ3

C

Cε

Proof. Fix z ∈ ΣC and let Bε(z) ⊆ ΣC, Cε = ∂Bε(z). We claim,∮
C

f(ζ)

ζ − z
dζ =

∮
Cε

f(ζ)

ζ − z
dζ

Introduce 4 “cuts” as shown by the dotted lines in the figure, and let the loops displayed be oriented
anticlockwise. Then, γ1 ∪ γ2 ∪ γ3 ∪ γ4 = C ∪ (−Cε). Further,

ζ 7→ f(ζ)

ζ − z

is holomorphic in Σγj for each j. As each of these sets Σγj can be covered by an open convex set
Ωj ⊆ O, we get by Theorem 4.1 that ∮

γj

f(ζ)

ζ − z
dζ = 0

for each j. Therefore, as integration over ∪γj is simply the sum of each of these integrals, we get∮
C

f(ζ)

ζ − z
dζ =

∮
Cε

f(ζ)

ζ − z
dζ

=⇒ 1

2πi

∮
C

f(ζ)

ζ − z
dζ − f(z) =

1

2πi

∮
Cε

f(ζ)

ζ − z
dζ − f(z)

2πi

∮
Cε

1

ζ − z
dζ

=⇒ 1

2πi

∮
C

f(ζ)

ζ − z
dζ − f(z) =

1

2πi

∮
Cε

f(ζ)− f(z)

ζ − z
dζ

20



Lecture 5

By the triangle inequality,∣∣∣∣ 1

2πi

∮
Cε

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ ≤ 1

2π
sup
ζ∈Cε

∣∣∣∣f(ζ)− f(z)

ζ − z

∣∣∣∣ℓ(Cε) = ε sup
ζ∈Cε

∣∣∣∣f(ζ)− f(z)

ζ − z

∣∣∣∣
As ε → 0, the supremum goes to |f ′(z)| and so the right most quantity goes to 0. Therefore, in light
of the equality above, we get

1

2πi

∮
C

f(ζ)

ζ − z
dζ − f(z) = 0

as was to be shown.
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Lecture 6

6.1 Some Remarks

In this lecture, we fisrt deal with some basic remarks regarding the Cauchy Integral Formula (Theorem
5.2.1). Then we will make some digression to the topic of power series in C. We start by definng the
notion of an entire function.

Definition 6.1.1

A function f : C→ C is called entire if f ∈ Hol(C).

We give some simple illustrations to get a hold of Cauchy Integral Formula.

Example 6.1.1

To compute ∮
C2(0)

zez

z + i
dz

we can use the Cauchy Integral Formula, to get∮
C2(0)

zez

z + i
dz = 2πi(−ie−i) = 2πe−i.

Example 6.1.2

To compute ∮
C2(0)

zez

z2 + 1
dz

we first note that z2 + 1 = (z + i)(z − i). Then we have∮
C2(0)

zez

z2 + 1
dz =

∮
C2(0)

zez

(z + i)(z − i)
dz

=
π

2πi

∮
C2(0)

(
zez

z − i
− zez

z + i

)
dz

= π
(
iei − (−ie−i)

)
= 2πi cos(1).

Now that we are in complex numbers, so we can factor polynomials. For example, we could factorise
z2 + 1 into (z + i)(z − i). This was not possible with R. So we can break any rational function into a
product of linear factors and evaluate the integral using the Cauchy integral formula.
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6.2 Series in C

This immediately begs the question: What are examples of holomorphic functions? The answer is
Power series (C[[X]]). In fact these are all functions that are holomorphic.

Before we go into this, let us make a little digression for series in C.

6.2 Series in C

Given a sequence {αn} ⊆ C, consider the “formal sum”

∞∑
j=0

αn (6.1)

and define the partial sums by

Sn =

n−1∑
j=0

αn.

We say that (6.1) is summable if {Sn} is a convergent sequence in C. In this case, we define the sum
of (6.1) to be limn→∞ Sn. Just like in R, we can show that if (6.1) is summable (or converges), then
{αn} must converge to 0.

Example 6.2.1

For z ∈ C, consider the geometric series

∞∑
n=0

αn

Then we have the partial sums

Sn =

n−1∑
k=0

αk =
1− αn

1− α
.

which converges if and only if |α| < 1. In this case, we have

∞∑
n=0

αn =
1

1− α
. (6.2)

Observe that the LHS of (6.2) is defined on B1(0) but the RHS is defined on C \ {1}. This points to
the notion of analytic continuation, which we will discuss in next lecture.
We now define the notion of absolute convergence in C.

Definition 6.2.1 ▶ Absolute Convergence

The series
∑∞

n=0 αn is said to be absolutely convergent if
∑∞

n=0 |αn| is convergent.

This immediately raises the question: What is the relationship between absolute convergence and
convergence in C? The answer is infact similar to that in R and is given by the following theorem.

Theorem 6.2.1 (Comparison Test) Let {αn}, {βn} ⊆ C be two sequencees such that
|αn| ≤ |βn| for all n. Then, if

∑∞
n=0 βn converges absolutely then

∑∞
n=0 αn also converges

absolutely.

Proof. Exercise.
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Lecture 6

Definition 6.2.2 ▶ Power Series

Let {αn} ⊆ C be a sequence. Then the series

∞∑
n=0

αn(z − z0)
n

is called a power series in z about z0 with coefficients {αn}.

Without loss of generality, we can assume that z0 = 0 and consider the series

∞∑
n=0

αnz
n. (6.3)

Remark.

• (6.3) always converges at z = 0.

• If (6.3) converges at z = z′ ̸= 0, then it converges absolutely for all z such that |z| ≤ |z′|.

• If
∑∞

n=0 |αn||z|n diverges at z = z′, then it diverges for all |z| ≥ |z′|.

The above remarks raises a natural question: What is the radius of convergence of (6.3)? The answer
is given by the following theorem.

Theorem 6.2.2Given a power series
∑∞

n=0 αnz
n, there exists a unique R ∈ [0,∞] (called the

redius of convergence) such that

(i) The series converges absolutely on BR(0) (= C if R = ∞).

(ii) The series diverges for all z such that |z| > R.

Moreover, we have

(I) 1
R = lim supn→∞

n
√
|an|

(II) The series converges uniformly on all compact subsets of BR(0), eqiuvalently, For all
small ϵ > 0, the series converges uniformly on BR−ϵ(0).

Remark. If we have a unform convergent sequence of functions {fn} on a set O. Then we say that∫
γ
fn converges to

∫
γ
f if Im γ ⊂ O. This would follow as

∫
γ
can be treated as a line integral on

R2, which in turn becomes a Riemann integral. Here lies one demonstration of the power of (II) of
Theorem 6.2.2.

Proof of Theorem 6.2.2. We only prove (i) as similar proof will work for (ii). We set

R =
1

lim supn→∞
n
√
|an|

and consider the following three cases:

• If R = 0, then lim supn→∞
n
√
|an| = +∞. So there exists a subsequence of {an} diverging to

+∞. Without loss of generality, we can assume that {an} be that subsequence itself. Now
fix z ≠ 0, then there exists N ∈ N such that for all n > N , n

√
|an| > 1

|z| , in other words,

|an||zn| > 1. This completes the proof.

• If R = +∞, then lim supn→∞
n
√

|an| = 0. So for every z ∈ C, lim supn→∞ |z| n
√

|an| = 0. In

other words, there exists N ∈ N such that for all n > N , |z| n
√
|an| < 1

2 . This completes the
proof by comparison test.
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6.2 Series in C

• For 0 < R < +∞, we fix z ̸= 0 such that |z| < R. Then there exists r > 0 such that |z| < r < R,
or eqiuvalently, 1

|z| >
1
r > 1

R = lim supn→∞
n
√
|an|. So there exists N ∈ N such that for all

n > N , |an| < 1
rn , which yields |an||zn| < |zn|

rn . As |z|
|r| < 1, comparison test shows that∑∞

n=0 |an||zn| converges. This completes the proof.

Finally, let ϵ > 0 be arbitarily small such that 0 < R − ϵ < R, then
∑

n≥N |an|(R − ϵ)n → 0 as
N → ∞. So for every z ∈ BR−ϵ(0),∑

n≥N

|an||z|n ≤
∑
n≥N

|an|(R− ϵ)n

This shows the uniform convergence on BR−ϵ(0).

Now we state a improtant lemma connecting the ratio and root tests and the convergence of power
series.

Lemma 6.2.1

Let {an} ⊆ C be a sequence. Then we have the following,

lim inf
n→∞

|an+1|
|an|

≤ lim inf
n→∞

n
√
|an| ≤ lim sup

n→∞

n
√
|an|︸ ︷︷ ︸

1
R

≤ lim sup
n→∞

|an+1|
|an|

.

Proof. Exercise.

So whenever limn→∞
|an+1|
|an| exists we can easily compute the radius of convergence of the power

series. In the next lecture, we will illustrate some simple examples of power series and their radius of
convergence and then complete our discussion on the power series.
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Lecture 7

In this lecture, we will complete our discussion of power series and consider analytic functions over the
complex plane. We will then prove the equivalence of analytic and holomorphic functions - deriving
the Cauchy integral formulae in the process. This is truly marvelous result with no immediate
analogue in real analysis, and will be extremely useful in the discussions to follows.

7.1 Power Series continued

We started our discussion of power series over C in the previous lecture. We give some simple
illustartions before moving on.

Example 7.1.1

Consider the power series given by
∑∞

n=1(1 + (−1)n)zn. Then the radius of convergence for
the same is given by

1

R
= lim sup

n→∞

n
√

(1 + (−1)n) = 1

Note that lim | an+1

an
| does not exist here, so one cannot use the ratio test.

Example 7.1.2 (Exponential function)

Consider the power series
∑∞

n=1
zn

n! . Evidently, lim | an+1

an
| = 0, and thus the power series

defines a function over C. We call this the exponential function and denote it by exp{z}.
Also for z1, z2 ∈ C, we have

exp{z1} exp{z2} =

( ∞∑
k=0

zk1
k!

)( ∞∑
l=0

zl2
l!

)

=

∞∑
n=0

n∑
r=0

zr1z
n−r
2

r!(n− r)!

=

∞∑
n=0

(z1 + z2)
n

n!
= exp{z1 + z2}

Note that the reordering of sums in justfied as the series is absolutely convergent. Using this
multiplicative property, along with continuity of power series, one can show that

exp{z} = ez =

∞∑
n=0

zn

n!
,
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7.1 Power Series continued

where e := exp{1} =
∑∞

n=0
1
n! . We will talk about this in more detail in the upcoming

lectures.

Example 7.1.3 (Sine and Cosine functions)

We define the sine and cosine functions over C using the complex power series analogous to
the Taylor series expansion of their real counterpart. In particular,

sin(z) =

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1, and

cos(z) =

∞∑
n=0

(−1)n

(2n)!
z2n

Note that these power series absolutely converge over C, and thus define entire functions. We
also have the Euler’s identity

ez =

∞∑
n=0

zn1
n!

=

∞∑
n=0

(−1)n

(2n)!
z2n + i

∞∑
n=0

(−1)n

(2n+ 1)!
z2n+1

= cos(z) + i sin(z)

We now comment on the differentiability of functions defined by power series. The exactly analogous
result holds for real power series as well, and the proof is almost identical.

Theorem 7.1.1
Let R be the radius of convergence of the power series f(z) :=

∑
anz

n, where z ∈ BR(0). Then
f ∈ Hol(O) and the derivative f ′(z) =

∑
nanz

n−1 is given by the correponding term-by-term
differentiation, for z ∈ BR(0).

Proof. First we compute the radius of convergence R′ of the derived power series
∑

nanz
n−1.

Evidently,
1

R′ = lim sup
n→∞

n
√
nan = lim sup

n→∞
n
√
an =

1

R

Thus the derived series defines a function g : BR(0) → C, such that

g(z) =

∞∑
n=0

nanz
n−1

Fix z ∈ BR(0) and correspondingly chooseδ > 0 such that |z|+ δ < R. Then for |h| < δ,

f(z + h)− f(z)

h
− g(z) = h

∞∑
n=2

anpn(z, h),

where pn(z, h) =
∑n

k=2

(
n
k

)
hk−2zn−k. The proof now follows as∣∣∣∣∣f(z + h)− f(z)

h
− g(z)

∣∣∣∣∣ ≤ |h|
∞∑

n=2

|an||pn(z, h)| ≤ |h|
∞∑

n=2

|an|pn(|z|, δ)

≤ |h|
δ2

∞∑
n=2

|an|(|z|+ δ)n−→ 0 as h → 0
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Lecture 7

Thus, if R be the radius of convergence of a power series f(z) :=
∑

anz
n, where z ∈ BR(0), then

f ∈ C∞(BR(0)), where the power series coefficients are given by the corresponding term-by-term
differentiation. Also, the coefficients {ak} can be computed from the derivatives of the function f at
z = 0 as

f (k)(z) =

∞∑
n=k

n(n− 1) . . . (n− k + 1)anz
n−k

∴ ak =
f (k)(0)

k!

7.2 Analytic Functions

Polynomials constitute the simplest examples of functions holomorphic on a given domain. The next,
most prototypical examples are those which are locally generated by power series.

Definition 7.2.1 ▶ Analytic function

Let f : O → C be a continuous function, where O is open in C. We say that f is analytic
at z0 ∈ O if there exists r > 0 such that f can be expressed as a convergent power series on
Br(z0). If this holds for all points z0 ∈ O, then we say f is analytic on O.

From the results of the previous section, it is clear that analytic functions are holomorphic, and in
fact, infinitely differentiable. For f : O → C analytic at z0, the local power series representation is

f(z) =

∞∑
k=0

f (k)(z0)

k!
(z − z0)

k

The converse is decidedly false in the real case. Consider for instance, the function f ∈ C∞(R),
defined by

f(x) =

{
e−

1
x2 if x > 0

0 if x ≤ 0

It is easy to check that all derivatives of f vanish at x = 0, but f is not identically zero in any
neighbourhood of x = 0. Thus, f is not analytic at x = 0. However this result has a positive answer
for holomorphic functions; it truly is one of the most remarkable results of complex analysis.

Theorem 7.2.1Let O be an open subset of C, and f ∈ HolO. Consider z0 ∈ O and δ > 0
such that Bδ(z0) ∈ O. Then, for C = Cr(z0), we have f(z) =

∑
an(z − z0)

n, where

an =
f (n)(z0)

n!
=

1

2πi

∮
C

f(ζ)

(ζ − z0)n+1
dζ

Proof. By Cauchy integral formula for a circular contour, ∀ z ∈ Br(z0),

f(z) =
1

2πi

∮
C

f(ζ)

ζ − z
dζ

Now, the following series converges uniformly for ζ ∈ C \ {z0}.

1

ζ − z
=

1

ζ − z0

1

1−
(

z−z0
ζ−z0

)
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7.2 Analytic Functions

=
1

ζ − z0

∞∑
n=0

(
z − z0
ζ − z0

)n

Then, as Reimann integration behaves well under uniform convergence over compact domains, we
have

f(z) =
1

2πi

∮
C

f(ζ)

ζ − z0

∞∑
n=0

(
z − z0
ζ − z0

)
dζ

=
1

2πi

∞∑
n=0

(z − z0)
n

∮
C

f(ζ)

(ζ − zn+1
0 )

dζ

=

∞∑
n=0

an(z − z0)
n

Thus f is analytic over O, with

f (n)(z0) =
n!

2πi

∮
C

f(ζ)

(ζ − z0)n+1
dζ (7.1)

The equations (7.1) are known as Cauchy integral formulae. This theorem sets apart complex analysis
from our familiar terrain of real analysis - and has many striking consequences. We will see many
applications of this wonderful theorem in the next lecture. For now, we have the simple corollary:

Corollary

For O an open subset of C, f ∈ Hol(O) if and only if f is analytic on O.

30



Lecture 8

8.1 Consequences of analyticity of holomorphic functions

Recall the main result from the last lecture: if f ∈ Hol(O), where O is an open subset of C, and
Br(z0) ⊆ O, then

f(z) =

∞∑
n=0

an(z − z0)
n, ∀ z ∈ Br(z0)

where

an =
f (n)(z0)

n!
=

1

2πi

∮
Cr(z0)

f(ζ)

(ζ − z0)n+1
dζ .

We now use focus on some important consequences of this result.

Theorem 8.1.1 (Cauchy’s Inequality) Let f ∈ Hol(O) and Br(z0) ⊆ O. Then, for all
n ≥ 1, ∣∣∣f (n)(z0)

∣∣∣ ≤ n!

rn
∥f∥Cr(z0)

,

where we define
∥f∥X = sup

z∈X
|f |.

Proof. We have, ∣∣∣f (n)(z0)
∣∣∣ = n!

2π

∣∣∣∣∣
∮
Cr(z0)

f(ζ)

(ζ − z0)n+1
dζ

∣∣∣∣∣
≤ n!

2π
sup

z∈Cr(z0)

∣∣∣∣ f(z)

(z − z0)n+1

∣∣∣∣ℓ(Cr(z0)) (triangle inequality)

We now use the fact that |z − z0| = r for z ∈ Cr(z0) and ℓ(Cr(z0)) = 2πr to get∣∣∣f (n)(z0)
∣∣∣ ≤ n!

rn
∥f∥Cr(z0)

as was required.

Theorem 8.1.2 (Liouville’s theorem) Let f be a bounded and entire function, i.e, f ∈
Hol(C). Then, f is constant.

Proof. We use Theorem 8.1.1 for f ′. Fix z0 ∈ C and r > 0. As Br(z0) ⊆ C, we have

|f ′(z0)| ≤
1

r
∥f∥Cr(z0)

≤
∥f∥∞
r

.

As r is an arbitrary positive real, we get f ′(z0) = 0 for all z0 ∈ C. Hence, f is constant.
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8.1 Consequences of analyticity of holomorphic functions

Remarks:

(1) As sin z, cos z are non-constant entire functions, they are not bounded on C.

(2) The theorem is false for Rn, as there are analytic functions (e.g, sinx) that are bounded and
non-constant.

We now give a rather slick proof of one of the most useful and ubiquitous results in all of mathematics,
the fact that C is algebraically closed.

Theorem 8.1.3 (Fundamental Theorem of Algebra) Let p ∈ C[z] be non-constant. Then,
there exists z0 ∈ C such that p(z0) = 0.

Proof. Suppose no such z0 exists. Then, 1
p is an entire function. If p(z) =

∑d
n=0 anz

n for complex
numbers an, then we get

1

p(z)
=

1

zd
1∑d

n=0 anz
n−d

z→∞−−−→ 0

Therefore, 1
p is bounded for |z| > R, for some R > 0, and as 1

p is entire and in particular continuous,

it attains a finite supremum on BR(0). So, 1
p is a bounded entire function, and hence must be

constant by Theorem 8.1.2. This contradicts the assumption that p is non-constant, and hence, some
root z0 of p exists in C.

Recall Theorem 4.1 that if f ∈ C(U) for some open convex set U and
∮
∂∆

f = 0 for all ∆ ⊆ U , then
there exists g ∈ Hol(U) such that g′ = f . One corollary of this is that any such function f must be
holomorphic on the set U . A stronger version of this result is the following.

Theorem 8.1.4 (Morera’s theorem)Let O ⊆ C be any open set, and f ∈ C(O). Then,
f ∈ Hol(U) if and only if

∮
∂∆

f = 0 for all ∆ ⊆ O.

Proof. If f ∈ Hol(O), we get
∮
∂∆

f = 0 for all ∆ ⊆ O by Cauchy’s integral theorem.

Conversely, suppose that
∮
∂∆

f = 0 for all ∆ ⊆ O. Then, as any ∆ ⊆ O is a closed convex set, we
get an open convex set U containing ∆ which is also contained in O. Over U , we apply Theorem
4.1 and get a local primitive of f . In particular, f ∈ Hol(U). Therefore, as f is holomorphic at each
point of O, we get f ∈ Hol(O) and so we are done.

Theorem 8.1.5 Let {fn}N ⊆ Hol(O). Suppose fn → f uniformly. Then, f ∈ Hol(O).

Remarks:

(1) We define fn → f uniformly on an open set, if the convergence is uniform on any compact
subset of the open set.

(2) The result fails miserably for R! For example, the Weierstrass approximation theorem says
R[x] ≃ C([0, 1],R), that is, any continuous function can be approximated uniformly by
polynomial functions, which are not just smooth but in fact their derivatives vanish after some
finite order.

Proof. By uniform convergence, f ∈ C(O). Fix ∆ ⊆ O. As fn ∈ Hol(O), we get by Morera’s theorem
that

∮
∂∆

f = 0. But, ∮
∂∆

f =

∮
∂∆

lim
n→∞

fn = lim
n→∞

∮
∂∆

fn = 0

and so by Morera’s theorem again, f ∈ Hol(O).
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Lecture 8

Theorem 8.1.6 Let the same assumptions hold as Theorem 8.1.5. Then, for all k ≥ 1,

f (k)
n → f (k)

uniformly on O.

Proof. It is clearly enough to show the result for k = 1, that is, f ′
n → f ′ uniformly. Further, it is

enough to show that f ′
n → f ′ uniformly on the closed discs Br(z0) ⊆ O. Fix r, z0 and δ small such

that

Br(z0) ⊆ Br+δ(z0) ⊆ O.

Consider z ∈ Br(z0) and let C be a circle of radius R centered at z. Assume δ
2 < R < δ so that

C ⊆ O. By Theorem 8.1.1,

|(fn − f)′(z)| ≤ 1

R
∥fn − f∥C

=⇒ |(fn − f)′(z)| < 1

δ
∥fn − f∥C

=⇒ |(fn − f)′(z)| < 1

δ
∥fn − f∥

Br+δ(z0)

=⇒ ∥f ′
n − f ′∥

Br(z0)
≤ 1

δ
∥fn − f∥

Br+δ(z0)

As fn → f uniformly, we get that f ′
n → f ′ uniformly from the above inequality.

8.2 Zeroes of Analytic Functions

Let O be an open subset of C, f ∈ Hol(O). We define the set of zeroes of f ,

Z(f) = {z ∈ O | f(z) = 0}

Let z0 ∈ Z(f). Consider the power series of f near z0,

f(z) =
∑
n≥m

an(z − z0)
n

We have the following two cases:

(i) There exists m0 ∈ N such that an = 0 for all n < m0 and am0
̸= 0.

Definition 8.2.1 ▶ Order of a zero

In this case, we define that z is a zero of f of (finite) order m0, and write Ord(f ; z0) = m0.

We have in this case, for z ∈ Br(z0),

f(z) = (z − z0)
m0g(z),

where g(z0) ̸= 0 and g ∈ Hol(Br(z0)). As g ∈ C(Br(z0)) in particular, there is r′ ≤ r such that
g(z) ̸= 0 for all z ∈ Br′(z0). Therefore, f(z) ̸= 0 for all z ∈ Br′(z0) \ {z0}. We have thus proved
the following theorem:

Theorem 8.2.1 Let f ∈ Hol(O) for O a domain. If z0 ∈ Z(f) is a finite order zero of f ,
z0 is an isolated point of Z(f).
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8.2 Zeroes of Analytic Functions

(ii) an = 0 for all n ≥ 0.

Definition 8.2.2

In this case, we define that z is a zero of f of infinite order.

We have in this case, f ≡ 0 on Br(z0) for some r > 0. This proves the following theorem.

Theorem 8.2.2 The set

Õ = {z ∈ Z(f) | z an infinite zero of f}

is open.

The following theorem is an easy consequence of the above results but it is a immensely useful result
by itself.

Theorem 8.2.3 (Nature of zeroes) Let f ∈ Hol(O) with O a domain in C and suppose f
is not identically zero. Then all zeroes of f are of finite order and are isolated.

Proof. We know Õ is open. We will show that it is also closed. Consider z0 ∈ O \ Õ. Then, there
is m ≥ 0 such that f (m)(z0) ̸= 0. By continuity, there is R > 0 such that f (m)(z) ̸= 0 for all

z ∈ BR(z0) ⊆ O \ Õ. Hence, Õ is a clopen set, and as it is not the full set O, it must be empty.
Therefore, all zeroes of f are of finite order, and they are isolated by the above results.

Corollary

Let f ∈ Hol(O), O a domain. If Z(f) has a limit point in O, then f ≡ 0.

The above result can be restated as follows:

Theorem 8.2.4 (Identity theorem) Suppose f, g ∈ Hol(O), O a domain. If f = g on
X ⊆ O which has a limit point in O, then f = g on all of O.
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Lecture 9

Recall in last lecture we proved ‘Identity theorem’. If f ∈ Hol(O) and if the zero set Z(f) has
limit point, then f is identically 0 over O. For example,

Example- f(z) = sin 1+z
1−z , z ∈ D, it is 0 when ever, (1+z)/(1−z) = 2nπ for integer n, i.e. z = nπ−1

nπ+1 .
This is a countable set and this sequence, do not have any limit point in D.

Theorem 9.0.5 (Cauchy Integral theorem for simply connected domain) Let f ∈
Hol(O). Then for any piece-wise smooth and closed curve γ,∮

γ

f(z) dz = 0

Proof. We know f is C1 as it is holomorphic. We can use Green’s theorem to get,∮
γ

f dz = 2

∫
Σγ

∂̄f dx dy

Since f ∈ Hol(O) we have, ∂̄f = 0 and thus the integral is zero. ■
Remark : The roots of holomorphic functions are in some sense ‘equivalent’ to roots of polynomials.

Theorem 9.0.6 (Maximum Modulus Principle ;MMP) Let, f ∈ Hol(O), where O is
domain and |f(z)| ≤ |f(α)| for some α ∈ O. Then f ≡ constant.

Proof. Let us consider the set, C = {z ∈ O : |f(z)| = |f(α)|}. Since, this set is non-empty it is a
closed set. Now, we will prove this is open as well, then by connectedness of O we can say, C is the
whole set, and hence |f | is constant over this domain ⇒ f is constant.

Claim- C is open, i.e. ever point is an interior point.

Proof. Fix z0 ∈ C, then there exists R > 0 such that Br(z0) ⊆ O. Consider, r < R. Then,

|f(α)| = |f(z)| =

∣∣∣∣∣ 1

2πi

∫
Cr(z0)

f(ζ)

ζ − z
dζ

∣∣∣∣∣
We now convert this in polar form. Define, ζ = z + reiθ, θ ∈ [0.2π). Therefore we have,

|f(α)| = 1

2π

∣∣∣∣∫ 2π

0

f(z + reiθ)

reiθ
reiθi dθ

∣∣∣∣
=

1

2π

∣∣∣∣∫ 2π

0

f(z + reiθ) dθ

∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣f(z + reiθ)
∣∣ dθ

35



8.2 Zeroes of Analytic Functions

But, |f(α)| ≥ |f(z)| for all z ∈ O. Thus, 1
2π

∫ 2π

0

(
|f(α)| −

∣∣f(z + reiθ)
∣∣) dθ ≤ 0. From the above

inequality and using continiuity we get |f(α)| =
∣∣f(z + reiθ)

∣∣. As this equality holds for all r < R
we can say this equality holds over BR(z0). So, BR(z0) ⊆ C. Thus C is open. With this we have
finished the proof of Claim as well as the theorem. ■

Corollary. Let, f ∈ Hol(O) and in this open set f(z) ̸= 0 for all z. Suppose, |f(z)| ≥ |f(α)|,
for all z. Then f is constant on this domain. [For proof just use MMP on 1/f ]

Theorem 9.0.7 (Open Mapping Theorem) Let f is a holomorphic function on O and let
it be a non-constant function. Then f is an open map.

Proof. (Caratheodory) Let, Õ ⊆ O open. To prove O is open pick α ∈ Õ and WLOG f(α) = 0
contained in f(Õ).

Claim- There exist ε > 0 such that Bε(0) ⊆ f(Õ) for some ε > 0.

Proof. As f ̸= constant, there exist a disc D̃ containing α such that D̃ ⊆ Õ and 0 /∈ f(D̃ \ {α}).
Evidently f(D̃) ⊆ f(Õ). Thus enough to prove that for any such disc, there exist Bε(0) ⊆ f(D̃).
There exists a circle C centered at α such that C ⊆ D̃ \ α. Set, ε := 1/2 inf {|f(z)| : z ∈ C} > 0.
Set, D = ΣC enough to show that Bε(0) ⊆ D. Now, fix w ∈ Bε(0) (in other words |w| < ε).
Define η(z) := f(z) − w, for all z in the set D. Enough to prove, η has zero in D. We know,
η ∈ Hol(D ⊆ domain ). Now |η(α)| < ε. Also, z ∈ C, |η(z)| ≥ |f(z)| − |w| > ε. The MMP states
that maxima or minima must occur at boundary. This is a contradiction !! The η has a zero in the
set D, which completes the proof. ■
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Special lecture -2

Recall the Bloch’s theorem. We will look at few corollary of this theorem.

Corollary. If f is holomorphic in domain G, f ′(c) ̸= 0 means f(G) contains a disc of radii

1

12
s|f ′(c)|

Towards little Picard

Lemma 14.0.1

Let, G ⊆ C simply-connected domain, let f ∈ Hol(G) and it’s image con’t contain −1, 1,
then f = cosF for some holomorphic f .

Proposition Let G ⊆ C be a simply connected domain, f(G) don’t contain 0, 1 then there exist
g ∈ Hol(G) such that,

f(z) =
1 + cos(cosπg)

2

and image of G does not contain any disc of radius 1.

If we take f to be as the thing given above, since f misses 0, 1, 2f − 1 will miss −1, 1. Now consider
a set,

A =

{
m± i

log
(
n+

√
n2 − 2

)
π

: n ≥ 2,m ∈ Z

}
This set will intersect disc of radius 1. But we will show g(G) ∩ A = ∅. Take a ∈ A and

a = m± i
log(n+

√
n2−2)

π so we will have

cosπa = (−1)mn

f(a) =
1 + (−1)n

2

And hence it don’t contain any disc of radius 1. ■

Corollary. f is an entire function that does not fix any point then f ◦ f has a fixed point
unless f(z) = z + b

Proof. Consider the function, g(z) = f◦f(z)−z
f(z)−z misses 0 and 1, hence by Picard theorem we can say it

is a constant function. Thus,

f(f(z))− z = c(f(z)− 1)

⇒ f ′(f(z))f ′(z)− 1 = c(f ′(z)− 1)

⇒ f ′(z)(f ′(f(z))− c) = 1− c
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8.2 Zeroes of Analytic Functions

(complete the proof)

Corollary. If f and g are entire and fn + gn = 1 then f, g are either constant or they have
common poles.
Proof.

Proof of Bloch’s Theorem

Lemma 1

Let, G ⊆ C bounded and f : G → C continuous suppose f |G is open. Let, a ∈ G be such that
s = mins∈∂G |f(z)− f(a)| then f(G) ⊆ B(f(a), s)
Proof. It is an exercise from Topology.

Lemma 2

Let, V = B(a, r) and let f ∈ Hol(V ) be non-constant. If ∥f ′∥V ≤ 2|f ′(a)|, then

f(V ) ⊇ B(f(a), R)

where R = (3− 2
√
2)r|f(a)|.

Proof. Consider the following function

A(z) = f(z)− f ′(0)z =

∫
[0,z]

(f ′(w)− f ′(z))dw

Using Cauchy Integral formula we can say,

f ′(v)− f ′(0) =
v

2πi

∮
∂V

f ′(w)

w(w − v)
dw

Now we have,

|A(z)| ≤
∫ 1

0

|f ′(zt)− f ′(0)||z| dt

≤
∫ 1

0

|zt|∥f∥V
r − |zt|

|z| dt

≤ |z|2

(r − |z|)
∥f ′∥V

This 0 < ρ < r, for |z| = ρ, |f(z)| ≥
(
ρ− ρ2

r−ρ

)
|f ′(0)|

Main Proof

Let, f ∈ Hol(E) it means f(E) ⊇ B(f(a), (3/2− 2
√
2)M). Note, |f ′(z)|(1− |z|) is continuous on

Ē. Suppose p ∈ E be the maxima point of the above function. And let M be the maximum then

(3/2−
√
2)M > 1/12|f ′(0)|. Let, t = 1−|p|

2 , this means M = 2t|f ′(p)| also B(p, t) ⊆ E and 1−|z| ≥ t
(via triangle inequality)
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Lecture 18

Recall last day we talked about ‘winding number’ and it is a continuous function from C to Z is
continuous. Today we will prove two big theorem, Argument prnciple and Rouche’s theorem.

Theorem 18.0.8 (Argument Principle) Let O ⊆ C open, γ be a closed simple curve such
that γ ∪ Σγ ⊆ O. Suppose f is a meromorphic function. Then

1

2πi

∮
γ

f ′(z)

f(z)
dz = Z{# zeroes of f in Σγ} − P{# poles of f in Σγ}
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