
Lecture 1

1.1 Introduction

Our objective is to study functions f : C → C. We know that as metric spaces C and R2 are
isometric, with the natural map (x, y) 7→ x+ iy being an isometry, but then what is the difference
between analysis in R2 and analysis in C? The difference arises because C is a field while R2 is not
a field, thus we have a notion of multiplication and division in the complex plane.
Before going into further details we recall some of the obvious observations that one can make,

1. (Triangle inequality). ||z1| − |z2|| ≤ |z1 − z2|.

2. |z| ≥ max{|x|, |y|} where z = x+ iy.

3. {zn}n∈N ⊆ C is a Cauchy sequence if and only if {(xn, yn)}n∈N ⊆ R2 is a Cauchy sequence,
which is equivalent to {xn}n∈N and {yn}n∈N are Cauchy sequences.

4. Let f : C→ C be a function. Then f is continuous (or limit exists) at a point z0 = x0 + iy0 if
and only if f : R2 → R2 viewed as a function from the real plane to the real plane is continuous
(or limit exists) at (x0, y0).

We haven’t yet clarified how the analysis of C differs from the analysis of R2, the fact that C is a

field gives us that f(z)−f(z0)
z−z0

∈ C for all z ̸= z0. Thus we can define the derivative of f : C→ C at

z0 as the complex number obtained by taking the limit limz→z0
f(z)−f(z0)

z−z0
(provided the limit exists).

Thus the derivative of f : C→ C at z0 ∈ C is a complex number, while the derivative of f : R2 → R2

(that is, the total derivative) is a 2× 2 matrix.
This raises the following question let f = u+ iv, then if we view f = (u, v) : R2 → R2 we know

Jf (x0, y0) = Df(x0, y0) =

[
ux(x0, y0) uy(x0, y0)
vx(x0, y0) vy(x0, y0)

]
,

is there any relation between f ′(z0) (if it exists) and Jf (x0, y0)?

Homewok. (another representation of C). Let

M =

{(
x −y
y x

)
| x, y ∈ R

}
⊆ M2(R) (1.1)

Show that M is a field under matrix multiplication and is in fact isomorphic to C.

The above assignment suggests there must be some representation of f ′(z0) in terms of the Jacobian
matrix Jf (x0, y0), indeed there is some relation which we will discuss in a while.
Notation. Br(z0) = {z ∈ C | |z − z0| < r}.

Definition 1.1.1 ▶ Holomorphic Functions.

Let O be an open subset of C, and let f : O → C be a function and z0 ∈ O. We say that f is
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C-differentiable at z0 or holomorphic at z0 if

lim
z→z0

f(z)− f(z0)

z − z0
=: f ′(z0) exists.

And we will say f is holomorphic on O if f is holomorphic at every point z ∈ O. We will
denote by

Hol(O) = {f : O → C | f is holomorphic}.

Then Hol(O) forms an algebra over C.

Lemma 1.1.1 (Some Immediate Observations.)

Let f, g : O → C be holomorphic at z0, then

1. f is continuous at z0.

2. (αf + g)′(z0) = αf ′(z0) + g′(z0) for all α ∈ C.

Example 1.1.1

Some examples of holomorphic functions are f(z) = z, f(z) = constant and f(z) = z2, while
f(z) = z̄ is not a holomorphic function. Note that in R2 the function f(z) = z̄ corresponds to

the function f(u, v) = (u,−v). But then we get that Df(u, v) =

[
1 0
0 −1

]
/∈ M (where M is

defined in equation 1.1). If we now consider the function f(z) = z2, then in R2 it corresponds

to the function f(x, y) = (x2 − y2, 2xy) then Jf (x, y) =

[
2x −2y
2y 2x

]
∈ M .

The above example gives us the motivation to answer the problem we had raised earlier: how are the
complex derivative and the Jacobian matrix related?

1.2 Holomorphic versus Differentiable Functions.

For this discussion we will let f = u+ iv : O → C, let z0 = x0 + iy0. Suppose f is holomorphic at z0,
and let α = a+ ib = f ′(z0). We then define the function for all z ∈ Br(z0)

R(z) = f(z)− f(z0)− α(z − z0)

= [u(z)− u(z0)− a(x− x0) + b(y − y0)]︸ ︷︷ ︸
R1(z)

+i [v(z)− v(z0)− b(x− x0)− a(y − y0)]︸ ︷︷ ︸
R2(z)

.

Now recall that f : R2 → R2 is differentiable at (x0, y0) if and only if

R(x, y)

∥(x, y)− (x0, y0)∥
→ 0 as (x, y) → (x0, y0).

But we have
R(z)

|z − z0|
=

R1(z)

|z − z0|
+ i

R(z)

|z − z0|
,

and we also know that f is holomorphic at z0 hence we get that

lim
z→z0

R(z)

|z − z0|
= 0 ⇐⇒ lim

z→z0

R1(z)

|z − z0|
= lim

z→z0

R2(z)

|z − z0|
= 0.
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Thus it is equivalent to saying that u, v : O → R are differentiable at (x0, y0) and we further have

a = ux = vy

b = vx = −uy.

Theorem 1.2.1 (Cauchy Riemann Equations) Let f := u+ iv : O → C be a function
and z0 ∈ O. Then f is holomorphic at z0 if and only if u, v : O → R is differentiable at z0 and
ux = vy and uy = −vx. These are called the Cauchy Riemann Equations, thus we have

ux = vy, uy = −vx and f ′(z0) = ux(z0) + ivx(z0).
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