
Lecture 2

2.1 Complex partial differential operators

Definition 2.1.1 ▶ Complex Ck functions

Let O ⊂ R2 be open. We say f : O → C is in C1(O) if the partial derivatives ∂f
∂x and ∂f

∂y are

continuous on O. Similarly, we say f ∈ Ck(O) if all the partial derivatives of order ≤ k are
continuous on O, that is,

Ck(O) =

{
f : O → C

∣∣∣∣ ∂tf

∂xi∂yj
is continuous on O for all i+ j = t and 1 ≤ t ≤ k

}
.

We denote continuous functions as C0(O) or C(O). Note that the notion of continuity is independent
of whether f is treated as a function f : R2 → R2 or f : C→ C.

Definition 2.1.2 ▶ Complex partial derivatives

Let f = u+ iv : O → C be in C1(O). Then we define the complex partial derivatives of
f as,

∂f =
∂f

∂z
:=

1

2

(
∂

∂x
− i

∂

∂y

)
(u+ iv)

and ∂̄f =
∂f

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

Note that ∂f and ∂̄f exist when the partials ∂f
∂x and ∂f

∂y exist. We don’t need the continuity of the
partials to define the complex partial derivatives. In practice however, we will almost always end up
working with C1 functions. Consider the following example,

Example 2.1.1

Let f(z) = z. Then,

∂f =
∂z

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
(x+ iy)

=
1

2
(1− i2) = 1

Also for g(z) = z̄,

∂g =
∂z̄

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
(x− iy)

=
1

2
(1 + i2) = 0

1
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We collect some properties of these differential operators in the following lemma. The proofs follows
from definition.

Lemma 2.1.1

Let f, g ∈ C1(O) and α, β ∈ C be scalars. Then show that,

1. ∂(αf + βg) = α∂f + β∂g.

2. ∂̄(αf + βg) = α∂̄f + β∂̄g.

3. ∂(fg) = f∂g + g∂f .

4. ∂̄(fg) = f∂̄g + g∂̄f .

Remark. For f = u+ iv ∈ C1(O), we have,

¯∂f =
∂f

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv)

=
1

2
(ux − vy) +

i

2
(vx + uy)

so it is immediate that, f ∈ Hol(O) if and only if ¯∂f = 0 on O. Again, for f ∈ Hol(O), ∂f = f ′ on
O. We will see that these differential operators will have roles analogous to the operators ∂x and ∂y
over R2.

Theorem 2.1.1Let O ⊆ C be a open and connected, and f = u+ iv ∈ Hol(O).

1. If f ′ = 0 then f is constant on O.

2. If f(O) ⊆ R then f is constant on O.

Proof. 1. Let f ′ = 0 on O. Then ux = 0 and vx = 0. So u and v are x−free. Also, by the
Cauchy-Riemann equations, uy = vx = 0 and vy = −ux = 0. So u and v are y−free. So, by
connectedness of O, u and v are constant. Hence, f is constant on O.

2. Let f(O) ⊆ R. Then v is constant. So vx = vy = 0. And by the Cauchy-Riemann equations,
ux = vy = 0 and uy = −vx = 0. Sou is constant. Hence, f is constant on O.

This indicates that the notion of holomorphicity is quite fundamentally different from that of the
R2-derivative, and any non-trivial examples requires the functions to be complex valued.

2.2 Harmonic functions

This is a very interesting class of functions, frequently encountered in the theory of PDEs and in
complex analysis. These are precisely the solution to the PDE ∆f = 0, where ∆ is the appropriate
Laplacian operator. For functions over R2, this equation becomes

∆f = fxx + fyy = 0

Let, f = u+ iv ∈ Hol(O) ∩ C2(O). Then the Cauchy-Riemann equations are

ux = vy and uy = −vx
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Now, we take the partial derivative of the first equation with respect to x, and that of the second
one with respect to y. As the functions u, v ∈ C2(O), the mixed partial derivatives are independent
of the order of integration. Thus,

uxx = vyx = vxy and uyy = −vxy = −vyx

Adding these two equations gives uxx + uyy = 0, that is, u is harmonic. Similarly, vxx + vyy = 0 and
therefore v is also harmonic. Henceforth, the Laplacian Operator will be defined as

∆ ≡ ∂2f

∂x2
+

∂2f

∂y2

Definition 2.2.1 ▶ Harmonic function

A function f ∈ C2(O), where O ⊆ R, is called harmonic if ∆f = 0.

Thus the real and imaginary parts of any holomorphic function are harmonic. This raises the
obvious question as to whether the converse is true. Is every harmonic function the real part of
some holomorphic function? The answer depends on the domain of definition of the functions. In
sufficiently nice domains, this is indeed the case. However, there are subsets of the complex plane
where this cannot be done. Answering this question, particularly for slightly more general situation
∆f = Ef , takes us to the theory of partial differential equations. We will develop some machinery
and then hopefully come back to this question.

2.3 Integration of complex functions

We already have a notion of line integrals over R2. Naturally, the question arises, whether integration
in C can be defined in an analogous manner. That is the journey we embark upon now.

Line integrals

Definition 2.3.1 ▶ Parametrized curve

A parametrized curve is a continuous function, often denoted by γ, z : [a, b] → C. We will
separate the real and imaginary parts as γ(t) = γ1(t) + iγ2(t) or as or z(t) = x(t) + iy(t).

• We say γ is closed if γ(a) = γ(b).

• γ is said to be simple closed if γ is closed and one-one on [a, b).

Definition 2.3.2

A function γ : [a, b] → C is said to be in C1[a, b] if both Re(γ) and Im(γ) are in C1[a, b].

We can talk about integration of a continuous over any curve, in a manner analogous to the definition
of Riemann Integration. However, in most examples, integration will be carried out on C1 curves,
in which case, (2.1) holds. So strictly speaking, Definition - 2.3.4 is a consequence rather than a
definition. More details regarding the same can be found in the next lecture.

Definition 2.3.3 ▶ Integration of a curve

Let γ : [a, b] → C be a curve. Then we define the integral of γ as,∫ b

a

γ(t) dt =

∫ b

a

γ1(t) dt+ i

∫ b

a

γ2(t) dt
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Definition 2.3.4 ▶ Contour integral

Let γ : [a, b] → C be a C1 curve and f ∈ C ({γ(t) : t ∈ [a, b]}) be a function. Then we define
the line integral or contour integral of f along γ as,∫

γ

f =

∫
γ

f(z) dz =

∫ b

a

f(γ(t))γ′(t) dt (2.1)

The integral in the right hand side is an ordinary line integral over R2. However, for this to be a
valid definition, it must be defined irrespective of the parametrization γ. This issue is addressed in
the next lecture. For now, we look at some instructive examples.

Example 2.3.1

We now compute the integral of f(z) = z2 over an arc the circle ∂Br(0) of radius r > 0
centered at 0. An arc of this circle can be parametrized as γ(t) = reit for 0 ≤ a ≤ t ≤ b ≤ 2π.
Then, ∫

γ

f =

∫ b

a

f(γ(t))γ′(t) dt

=

∫ b

a

(reit)2(ireit) dt

= r3
∫ b

a

e3it dt

Splitting the integral
∫ b

a
e3it dt into real and imaginary parts, we get,∫ b

a

e3it dt =

∫ b

a

cos(3t) dt+ i

∫ b

a

sin(3t) dt

=
sin(3t)

3

∣∣∣∣b
a

+ i −cos(3t)

3

∣∣∣∣b
a

=
e3it

3

∣∣∣∣b
a

=⇒
∫
γ

f =
r3

3

(
e3ib − e3ia

)
{
= 0 if b− a = 2nπ

3 for any n ∈ Z
̸= 0 otherwise

Consider a polynomial p(z) = a0 + a1z + · · ·+ anz
n. It is an immediate observation that the integral∫

∂Br(0)
p dz is always zero for any r > 0. This somehow indicates to the fact that

∫
∂Br(0)

f dz = 0

for some other “good” functions f , which exhibit a polynomial like behavior. The obvious guesses
are functions which a power series expansion around a neighbourhood, i.e., analytic functions. This
and much more will turn out to be true, but for now, we look at some other examples.
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Example 2.3.2

Let γ be the line joining 1 and 1+2i, which can be parametrized as γ(t) = 1+2it for 0 ≤ t ≤ 1.
Then, we compute the integral of f(z) = z2 over γ as,∫

γ

f =

∫ 1

0

(1 + 2it)2(2i) dt

=
2

3
+ 4i ̸= 0

Example 2.3.3

Let r > 0 and f : C \ {0} → C be the fucntion f(z) = 1
z . Note that, f is continuous on

∂Br(0) but f ̸∈ Hol(Br(0)). We compute the integral of f over the circle ∂Br(0) with our
previous parameterization as,∫

∂Br(0)

1

z
dz =

∫ 2π

0

1

reit
(ireit) dt

=

∫ 2π

0

i dt

= 2πi ̸= 0

Writing differently,
1

2πi

∫
∂Br(0)

1

z
dz = 1

If we now increase the speed of parameterization of ∂Br(0) to n, i.e. γ(t) = reint for 0 ≤ t ≤ 2π.
Then we get

1

2πi

∫
∂Br(0)

1

z
dz = n

The integer n in the above example is called the winding number of the curve γ around 0, which is
a topological invariant and is the starting point of index theory.
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