
Lecture 5

5.1 Stokes’ and Green’s Theorem

Before developing some more tools required to prove the Cauchy-Goursat theorem, we give some
more motivation towards the result; what happens for C1 functions. Recall Stokes’s theorem for R2:
Consider a simply connected region Ω ⊆ R2 with piecewise smooth, simple and closed boundary ∂Ω.
If f = P dx+Qdy is a C1 1−form on an open set U ⊇ Ω ∪ ∂Ω, then∮

∂Ω

f =

∫∫
Ω

df .

Now, as f = P dx + Qdy, we get df = dP dx + dQdy = Py dy dx + Qx dxdy = (Qx − Py) dxdy.
Hence, ∮

∂Ω

f =

∮
∂Ω

P dx+Qdy =

∫∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dx dy

which is nothing but the statement of Green’s theorem. We now return to C and assume f ∈
Hol(Ω) ∩ C1(Ω), where Ω is a simply connected region as above. Let γ ⊆ Ω be a piecewise smooth,
simple and closed curve. Then, by the discussion of lecture 3,∮

γ

f dz =

(∮
γ

udx− v dy

)
+ i

(∮
γ

v dx+ udy

)
Using Stokes’s theorem on the two integrals on the right we get, [Σγ is the capping surface of γ, in
some lecture we have used the notion of capping surface as int (γ)]∮

γ

f dz =

∫∫
Σγ

(
−∂v

∂x
− ∂u

∂y

)
dxdy + i

∫∫
Σγ

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0

where the final equality follows from the Cauchy-Riemann equations. This is exactly the statement of
the Cauchy-Goursat theorem! We now set to develop the tools needed to remove the C1 restriction,
that is, to show that holomorphic functions must be C1 on “nice” domains.
Exercise: Suppose f ∈ C1(Ω), where Ω is as above. If γ is a curve as above, show that∮

γ

f dz = 2i

∫∫
Σγ

∂f dxdy

holds for all such functions, without assuming holomorphicity.

Recall the result from lecture 3 that
1

2πi

∮
Cr(0)

1

z
= 1

for any r > 0. Changing variables, we get the equality

1

2πi

∮
Cr(z0)

1

z − z0
= 1

for any z0 ∈ C. We now generalise this result to the following very useful theorem.
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5.2 Cauchy Integral Formula

Theorem 5.2.1 (Cauchy Integral Formula) Let f ∈ Hol(O) and C ⊆ O be a circle such
that D = C ∪ ΣC is in O. Then, for all z ∈ ΣC,

1

2πi

∮
C

f(ζ)

ζ − z
dζ = f(z).

Remark. Note that if z ∈ O \D, by Theorem 4.1,

1

2πi

∮
C

f(ζ)

ζ − z
dζ = 0.

z

γ4

γ1

γ2

γ3

C

Cε

Proof. Fix z ∈ ΣC and let Bε(z) ⊆ ΣC, Cε = ∂Bε(z). We claim,∮
C

f(ζ)

ζ − z
dζ =

∮
Cε

f(ζ)

ζ − z
dζ

Introduce 4 “cuts” as shown by the dotted lines in the figure, and let the loops displayed be oriented
anticlockwise. Then, γ1 ∪ γ2 ∪ γ3 ∪ γ4 = C ∪ (−Cε). Further,

ζ 7→ f(ζ)

ζ − z

is holomorphic in Σγj for each j. As each of these sets Σγj can be covered by an open convex set
Ωj ⊆ O, we get by Theorem 4.1 that ∮

γj

f(ζ)

ζ − z
dζ = 0

for each j. Therefore, as integration over ∪γj is simply the sum of each of these integrals, we get∮
C

f(ζ)

ζ − z
dζ =

∮
Cε

f(ζ)

ζ − z
dζ

=⇒ 1

2πi

∮
C

f(ζ)

ζ − z
dζ − f(z) =

1

2πi

∮
Cε

f(ζ)

ζ − z
dζ − f(z)

2πi

∮
Cε

1

ζ − z
dζ

=⇒ 1

2πi

∮
C

f(ζ)

ζ − z
dζ − f(z) =

1

2πi

∮
Cε

f(ζ)− f(z)

ζ − z
dζ
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By the triangle inequality,∣∣∣∣ 1

2πi

∮
Cε

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ ≤ 1

2π
sup
ζ∈Cε

∣∣∣∣f(ζ)− f(z)

ζ − z

∣∣∣∣ℓ(Cε) = ε sup
ζ∈Cε

∣∣∣∣f(ζ)− f(z)

ζ − z

∣∣∣∣
As ε → 0, the supremum goes to |f ′(z)| and so the right most quantity goes to 0. Therefore, in light
of the equality above, we get

1

2πi

∮
C

f(ζ)

ζ − z
dζ − f(z) = 0

as was to be shown.
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