Lecture 5

5.1 Stokes’ and Green’s Theorem

Before developing some more tools required to prove the Cauchy-Goursat theorem, we give some
more motivation towards the result; what happens for C! functions. Recall Stokes’s theorem for IR?:
Consider a simply connected region 2 C R? with piecewise smooth, simple and closed boundary €.
If f=Pdz+QdyisaC' 1-form on an open set U D QU 9N, then
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Now, as f = Pdz + Qdy, we get df = dPdz +dQdy = Pydyds + Q,dzdy = (Q, — Py) dzdy.

Hence,
7{ f= de—l—Qdy:// (aQ—aP>dxdy
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which is nothing but the statement of Green’s theorem. We now return to C and assume f €
Hol(©2) N C1(£2), where € is a simply connected region as above. Let v C Q be a piecewise smooth,
simple and closed curve. Then, by the discussion of lecture 3,
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Using Stokes’s theorem on the two integrals on the right we get, [, is the capping surface of v, in
some lecture we have used the notion of capping surface as int (7)]
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where the final equality follows from the Cauchy-Riemann equations. This is exactly the statement of
the Cauchy-Goursat theorem! We now set to develop the tools needed to remove the C' restriction,
that is, to show that holomorphic functions must be C' on “nice” domains.

Exercise: Suppose f € C1(Q), where Q is as above. If v is a curve as above, show that
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holds for all such functions, without assuming holomorphicity.

Recall the result from lecture 3 that )
= Z -1
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for any r > 0. Changing variables, we get the equality
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for any zp € C. We now generalise this result to the following very useful theorem.
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5.2 Cauchy Integral Formula

Theorem 5.2.1 (Cauchy Integral Formula) Let f € Hol(O) and C C O be a circle such
that D = CUXC is in O. Then, for all z € XC,
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d¢ = f(2).

Remark. Note that if z € O\ D, by Theorem 4.1,
B

d¢ = 0.

2mi Jo (— 2

Proof. Fix z € ¥C and let B.(z) C ¥C, C. = dB.(z). We claim,
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Introduce 4 “cuts” as shown by the dotted lines in the figure, and let the loops displayed be oriented
anticlockwise. Then, y1 U~y U~v3 U~y = C U (—C:). Further,
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is holomorphic in 3+; for each j. As each of these sets Xv; can be covered by an open convex set
Q; € O, we get by Theorem 4.1 that
f(Q)
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for each j. Therefore, as integration over Uv; is simply the sum of each of these integrals, we get
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5.2. CAUCHY INTEGRAL FORMULA 3

By the triangle inequality,
f F) - f(2) f(Q) — f(z)
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Q) = f(z)
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dC‘ < — sup
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As e — 0, the supremum goes to |f’(z)| and so the right most quantity goes to 0. Therefore, in light
of the equality above, we get
1 Q)
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aC— f(z) =0

as was to be shown. O
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