
Lecture 6

6.1 Some Remarks

In this lecture, we fisrt deal with some basic remarks regarding the Cauchy Integral Formula (Theorem
5.2.1). Then we will make some digression to the topic of power series in C. We start by definng the
notion of an entire function.

Definition 6.1.1

A function f : C→ C is called entire if f ∈ Hol(C).

We give some simple illustrations to get a hold of Cauchy Integral Formula.

Example 6.1.1

To compute ∮
C2(0)

zez

z + i
dz

we can use the Cauchy Integral Formula, to get∮
C2(0)

zez

z + i
dz = 2πi(−ie−i) = 2πe−i.

Example 6.1.2

To compute ∮
C2(0)

zez

z2 + 1
dz

we first note that z2 + 1 = (z + i)(z − i). Then we have∮
C2(0)

zez

z2 + 1
dz =

∮
C2(0)

zez

(z + i)(z − i)
dz

=
π

2πi

∮
C2(0)

(
zez

z − i
− zez

z + i

)
dz

= π
(
iei − (−ie−i)

)
= 2πi cos(1).

Now that we are in complex numbers, so we can factor polynomials. For example, we could factorise
z2 + 1 into (z + i)(z − i). This was not possible with R. So we can break any rational function into a
product of linear factors and evaluate the integral using the Cauchy integral formula.

This immediately begs the question: What are examples of holomorphic functions? The answer is
Power series (C[[X]]). In fact these are all functions that are holomorphic.
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Before we go into this, let us make a little digression for series in C.

6.2 Series in C

Given a sequence {αn} ⊆ C, consider the “formal sum”

∞∑
j=0

αn (6.1)

and define the partial sums by

Sn =

n−1∑
j=0

αn.

We say that (6.1) is summable if {Sn} is a convergent sequence in C. In this case, we define the sum
of (6.1) to be limn→∞ Sn. Just like in R, we can show that if (6.1) is summable (or converges), then
{αn} must converge to 0.

Example 6.2.1

For z ∈ C, consider the geometric series

∞∑
n=0

αn

Then we have the partial sums

Sn =

n−1∑
k=0

αk =
1− αn

1− α
.

which converges if and only if |α| < 1. In this case, we have

∞∑
n=0

αn =
1

1− α
. (6.2)

Observe that the LHS of (6.2) is defined on B1(0) but the RHS is defined on C \ {1}. This points to
the notion of analytic continuation, which we will discuss in next lecture.

We now define the notion of absolute convergence in C.

Definition 6.2.1 ▶ Absolute Convergence

The series
∑∞

n=0 αn is said to be absolutely convergent if
∑∞

n=0 |αn| is convergent.

This immediately raises the question: What is the relationship between absolute convergence and
convergence in C? The answer is infact similar to that in R and is given by the following theorem.

Theorem 6.2.1 (Comparison Test) Let {αn}, {βn} ⊆ C be two sequencees such that
|αn| ≤ |βn| for all n. Then, if

∑∞
n=0 βn converges absolutely then

∑∞
n=0 αn also converges

absolutely.

Proof. Exercise.



6.2. SERIES IN C 3

Definition 6.2.2 ▶ Power Series

Let {αn} ⊆ C be a sequence. Then the series

∞∑
n=0

αn(z − z0)
n

is called a power series in z about z0 with coefficients {αn}.

Without loss of generality, we can assume that z0 = 0 and consider the series

∞∑
n=0

αnz
n. (6.3)

Remark.

• (6.3) always converges at z = 0.

• If (6.3) converges at z = z′ ̸= 0, then it converges absolutely for all z such that |z| ≤ |z′|.

• If
∑∞

n=0 |αn||z|n diverges at z = z′, then it diverges for all |z| ≥ |z′|.

The above remarks raises a natural question: What is the radius of convergence of (6.3)? The answer
is given by the following theorem.

Theorem 6.2.2Given a power series
∑∞

n=0 αnz
n, there exists a unique R ∈ [0,∞] (called the

redius of convergence) such that

(i) The series converges absolutely on BR(0) (= C if R = ∞).

(ii) The series diverges for all z such that |z| > R.

Moreover, we have

(I) 1
R = lim supn→∞

n
√
|an|

(II) The series converges uniformly on all compact subsets of BR(0), eqiuvalently, For all
small ϵ > 0, the series converges uniformly on BR−ϵ(0).

Remark. If we have a unform convergent sequence of functions {fn} on a set O. Then we say that∫
γ
fn converges to

∫
γ
f if Im γ ⊂ O. This would follow as

∫
γ
can be treated as a line integral on

R2, which in turn becomes a Riemann integral. Here lies one demonstration of the power of (II) of
Theorem 6.2.2.

Proof of Theorem 6.2.2. We only prove (i) as similar proof will work for (ii). We set

R =
1

lim supn→∞
n
√
|an|

and consider the following three cases:

• If R = 0, then lim supn→∞
n
√
|an| = +∞. So there exists a subsequence of {an} diverging to

+∞. Without loss of generality, we can assume that {an} be that subsequence itself. Now
fix z ≠ 0, then there exists N ∈ N such that for all n > N , n

√
|an| > 1

|z| , in other words,

|an||zn| > 1. This completes the proof.

• If R = +∞, then lim supn→∞
n
√

|an| = 0. So for every z ∈ C, lim supn→∞ |z| n
√

|an| = 0. In

other words, there exists N ∈ N such that for all n > N , |z| n
√
|an| < 1

2 . This completes the
proof by comparison test.
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• For 0 < R < +∞, we fix z ̸= 0 such that |z| < R. Then there exists r > 0 such that |z| < r < R,
or eqiuvalently, 1

|z| >
1
r > 1

R = lim supn→∞
n
√
|an|. So there exists N ∈ N such that for all

n > N , |an| < 1
rn , which yields |an||zn| < |zn|

rn . As |z|
|r| < 1, comparison test shows that∑∞

n=0 |an||zn| converges. This completes the proof.

Finally, let ϵ > 0 be arbitarily small such that 0 < R − ϵ < R, then
∑

n≥N |an|(R − ϵ)n → 0 as
N → ∞. So for every z ∈ BR−ϵ(0),∑

n≥N

|an||z|n ≤
∑
n≥N

|an|(R− ϵ)n

This shows the uniform convergence on BR−ϵ(0).

Now we state a improtant lemma connecting the ratio and root tests and the convergence of power
series.

Lemma 6.2.1

Let {an} ⊆ C be a sequence. Then we have the following,

lim inf
n→∞

|an+1|
|an|

≤ lim inf
n→∞

n
√
|an| ≤ lim sup

n→∞

n
√
|an|︸ ︷︷ ︸

1
R

≤ lim sup
n→∞

|an+1|
|an|

.

Proof. Exercise.

So whenever limn→∞
|an+1|
|an| exists we can easily compute the radius of convergence of the power

series. In the next lecture, we will illustrate some simple examples of power series and their radius of
convergence and then complete our discussion on the power series.
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