
Lecture 8

8.1 Consequences of analyticity of holomorphic functions

Recall the main result from the last lecture: if f ∈ Hol(O), where O is an open subset of C, and
Br(z0) ⊆ O, then

f(z) =

∞∑
n=0

an(z − z0)
n, ∀ z ∈ Br(z0)

where

an =
f (n)(z0)

n!
=

1

2πi

∮
Cr(z0)

f(ζ)

(ζ − z0)n+1
dζ .

We now use focus on some important consequences of this result.

Theorem 8.1.1 (Cauchy’s Inequality) Let f ∈ Hol(O) and Br(z0) ⊆ O. Then, for all
n ≥ 1, ∣∣∣f (n)(z0)

∣∣∣ ≤ n!

rn
∥f∥Cr(z0)

,

where we define
∥f∥X = sup

z∈X
|f |.

Proof. We have, ∣∣∣f (n)(z0)
∣∣∣ = n!

2π

∣∣∣∣∣
∮
Cr(z0)

f(ζ)

(ζ − z0)n+1
dζ

∣∣∣∣∣
≤ n!

2π
sup

z∈Cr(z0)

∣∣∣∣ f(z)

(z − z0)n+1

∣∣∣∣ℓ(Cr(z0)) (triangle inequality)

We now use the fact that |z − z0| = r for z ∈ Cr(z0) and ℓ(Cr(z0)) = 2πr to get∣∣∣f (n)(z0)
∣∣∣ ≤ n!

rn
∥f∥Cr(z0)

as was required.

Theorem 8.1.2 (Liouville’s theorem) Let f be a bounded and entire function, i.e, f ∈
Hol(C). Then, f is constant.

Proof. We use Theorem 8.1.1 for f ′. Fix z0 ∈ C and r > 0. As Br(z0) ⊆ C, we have

|f ′(z0)| ≤
1

r
∥f∥Cr(z0)

≤
∥f∥∞
r

.

As r is an arbitrary positive real, we get f ′(z0) = 0 for all z0 ∈ C. Hence, f is constant.
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Remarks:

(1) As sin z, cos z are non-constant entire functions, they are not bounded on C.

(2) The theorem is false for Rn, as there are analytic functions (e.g, sinx) that are bounded and
non-constant.

We now give a rather slick proof of one of the most useful and ubiquitous results in all of mathematics,
the fact that C is algebraically closed.

Theorem 8.1.3 (Fundamental Theorem of Algebra) Let p ∈ C[z] be non-constant. Then,
there exists z0 ∈ C such that p(z0) = 0.

Proof. Suppose no such z0 exists. Then, 1
p is an entire function. If p(z) =

∑d
n=0 anz

n for complex
numbers an, then we get

1

p(z)
=

1

zd
1∑d

n=0 anz
n−d

z→∞−−−→ 0

Therefore, 1
p is bounded for |z| > R, for some R > 0, and as 1

p is entire and in particular continuous,

it attains a finite supremum on BR(0). So, 1
p is a bounded entire function, and hence must be

constant by Theorem 8.1.2. This contradicts the assumption that p is non-constant, and hence, some
root z0 of p exists in C.

Recall Theorem 4.1 that if f ∈ C(U) for some open convex set U and
∮
∂∆

f = 0 for all ∆ ⊆ U , then
there exists g ∈ Hol(U) such that g′ = f . One corollary of this is that any such function f must be
holomorphic on the set U . A stronger version of this result is the following.

Theorem 8.1.4 (Morera’s theorem)Let O ⊆ C be any open set, and f ∈ C(O). Then,
f ∈ Hol(U) if and only if

∮
∂∆

f = 0 for all ∆ ⊆ O.

Proof. If f ∈ Hol(O), we get
∮
∂∆

f = 0 for all ∆ ⊆ O by Cauchy’s integral theorem.

Conversely, suppose that
∮
∂∆

f = 0 for all ∆ ⊆ O. Then, as any ∆ ⊆ O is a closed convex set, we
get an open convex set U containing ∆ which is also contained in O. Over U , we apply Theorem
4.1 and get a local primitive of f . In particular, f ∈ Hol(U). Therefore, as f is holomorphic at each
point of O, we get f ∈ Hol(O) and so we are done.

Theorem 8.1.5 Let {fn}N ⊆ Hol(O). Suppose fn → f uniformly. Then, f ∈ Hol(O).

Remarks:

(1) We define fn → f uniformly on an open set, if the convergence is uniform on any compact
subset of the open set.

(2) The result fails miserably for R! For example, the Weierstrass approximation theorem says
R[x] ≃ C([0, 1],R), that is, any continuous function can be approximated uniformly by
polynomial functions, which are not just smooth but in fact their derivatives vanish after some
finite order.

Proof. By uniform convergence, f ∈ C(O). Fix ∆ ⊆ O. As fn ∈ Hol(O), we get by Morera’s theorem
that

∮
∂∆

f = 0. But, ∮
∂∆

f =

∮
∂∆

lim
n→∞

fn = lim
n→∞

∮
∂∆

fn = 0

and so by Morera’s theorem again, f ∈ Hol(O).



8.2. ZEROES OF ANALYTIC FUNCTIONS 3

Theorem 8.1.6 Let the same assumptions hold as Theorem 8.1.5. Then, for all k ≥ 1,

f (k)
n → f (k)

uniformly on O.

Proof. It is clearly enough to show the result for k = 1, that is, f ′
n → f ′ uniformly. Further, it is

enough to show that f ′
n → f ′ uniformly on the closed discs Br(z0) ⊆ O. Fix r, z0 and δ small such

that

Br(z0) ⊆ Br+δ(z0) ⊆ O.

Consider z ∈ Br(z0) and let C be a circle of radius R centered at z. Assume δ
2 < R < δ so that

C ⊆ O. By Theorem 8.1.1,

|(fn − f)′(z)| ≤ 1

R
∥fn − f∥C

=⇒ |(fn − f)′(z)| < 1

δ
∥fn − f∥C

=⇒ |(fn − f)′(z)| < 1

δ
∥fn − f∥

Br+δ(z0)

=⇒ ∥f ′
n − f ′∥

Br(z0)
≤ 1

δ
∥fn − f∥

Br+δ(z0)

As fn → f uniformly, we get that f ′
n → f ′ uniformly from the above inequality.

8.2 Zeroes of Analytic Functions

Let O be an open subset of C, f ∈ Hol(O). We define the set of zeroes of f ,

Z(f) = {z ∈ O | f(z) = 0}

Let z0 ∈ Z(f). Consider the power series of f near z0,

f(z) =
∑
n≥m

an(z − z0)
n

We have the following two cases:

(i) There exists m0 ∈ N such that an = 0 for all n < m0 and am0
̸= 0.

Definition 8.2.1 ▶ Order of a zero

In this case, we define that z is a zero of f of (finite) order m0, and write Ord(f ; z0) = m0.

We have in this case, for z ∈ Br(z0),

f(z) = (z − z0)
m0g(z),

where g(z0) ̸= 0 and g ∈ Hol(Br(z0)). As g ∈ C(Br(z0)) in particular, there is r′ ≤ r such that
g(z) ̸= 0 for all z ∈ Br′(z0). Therefore, f(z) ̸= 0 for all z ∈ Br′(z0) \ {z0}. We have thus proved
the following theorem:

Theorem 8.2.1 Let f ∈ Hol(O) for O a domain. If z0 ∈ Z(f) is a finite order zero of f ,
z0 is an isolated point of Z(f).
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(ii) an = 0 for all n ≥ 0.

Definition 8.2.2

In this case, we define that z is a zero of f of infinite order.

We have in this case, f ≡ 0 on Br(z0) for some r > 0. This proves the following theorem.

Theorem 8.2.2 The set

Õ = {z ∈ Z(f) | z an infinite zero of f}

is open.

The following theorem is an easy consequence of the above results but it is a immensely useful result
by itself.

Theorem 8.2.3 (Nature of zeroes) Let f ∈ Hol(O) with O a domain in C and suppose f
is not identically zero. Then all zeroes of f are of finite order and are isolated.

Proof. We know Õ is open. We will show that it is also closed. Consider z0 ∈ O \ Õ. Then, there
is m ≥ 0 such that f (m)(z0) ̸= 0. By continuity, there is R > 0 such that f (m)(z) ̸= 0 for all

z ∈ BR(z0) ⊆ O \ Õ. Hence, Õ is a clopen set, and as it is not the full set O, it must be empty.
Therefore, all zeroes of f are of finite order, and they are isolated by the above results.

Corollary

Let f ∈ Hol(O), O a domain. If Z(f) has a limit point in O, then f ≡ 0.

The above result can be restated as follows:

Theorem 8.2.4 (Identity theorem) Suppose f, g ∈ Hol(O), O a domain. If f = g on
X ⊆ O which has a limit point in O, then f = g on all of O.
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