Lecture 8

8.1 Consequences of analyticity of holomorphic functions

Recall the main result from the last lecture: if $f \in Hol(\mathcal{O})$, where \mathcal{O} is an open subset of \mathbb{C} , and $\overline{B_r(z_0)} \subseteq \mathcal{O}$, then

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad \forall z \in B_r(z_0)$$

where

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \oint_{C_r(z_0)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \,\mathrm{d}\zeta \,.$$

We now use focus on some important consequences of this result.

Theorem 8.1.1 (Cauchy's Inequality) Let $f \in Hol(\mathcal{O})$ and $\overline{B_r(z_0)} \subseteq \mathcal{O}$. Then, for all $n \geq 1$,

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{r^n} \| f \|_{C_r(z_0)}$$

where we define

$$\|f\|_X = \sup_{z \in X} |f|.$$

Proof. We have,

$$\begin{aligned} \left| f^{(n)}(z_0) \right| &= \frac{n!}{2\pi} \left| \oint_{C_r(z_0)} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \, \mathrm{d}\zeta \right| \\ &\leq \frac{n!}{2\pi} \sup_{z \in C_r(z_0)} \left| \frac{f(z)}{(z - z_0)^{n+1}} \right| \ell(C_r(z_0)) \end{aligned}$$
(triangle inequality)

We now use the fact that $|z - z_0| = r$ for $z \in C_r(z_0)$ and $\ell(C_r(z_0)) = 2\pi r$ to get

$$\left|f^{(n)}(z_0)\right| \le \frac{n!}{r^n} \|f\|_{C_r(z_0)}$$

as was required.

Theorem 8.1.2 (Liouville's theorem) Let f be a bounded and entire function, i.e, $f \in Hol(\mathbb{C})$. Then, f is constant.

Proof. We use Theorem 8.1.1 for f'. Fix $z_0 \in \mathbb{C}$ and r > 0. As $\overline{B_r(z_0)} \subseteq \mathbb{C}$, we have

$$|f'(z_0)| \le \frac{1}{r} ||f||_{C_r(z_0)} \le \frac{||f||_{\infty}}{r}.$$

As r is an arbitrary positive real, we get $f'(z_0) = 0$ for all $z_0 \in \mathbb{C}$. Hence, f is constant.

1

2

Remarks:

- (1) As $\sin z$, $\cos z$ are non-constant entire functions, they are not bounded on \mathbb{C} .
- (2) The theorem is false for \mathbb{R}^n , as there are analytic functions (e.g., $\sin x$) that are bounded and non-constant.

We now give a rather slick proof of one of the most useful and ubiquitous results in all of mathematics, the fact that \mathbb{C} is algebraically closed.

Theorem 8.1.3 (Fundamental Theorem of Algebra) Let $p \in \mathbb{C}[z]$ be non-constant. Then, there exists $z_0 \in \mathbb{C}$ such that $p(z_0) = 0$.

Proof. Suppose no such z_0 exists. Then, $\frac{1}{p}$ is an entire function. If $p(z) = \sum_{n=0}^{d} a_n z^n$ for complex numbers a_n , then we get

$$\frac{1}{p(z)} = \frac{1}{z^d} \frac{1}{\sum_{n=0}^d a_n z^{n-d}} \xrightarrow{z \to \infty} 0$$

Therefore, $\frac{1}{p}$ is bounded for |z| > R, for some R > 0, and as $\frac{1}{p}$ is entire and in particular continuous, it attains a finite supremum on $\overline{B_R(0)}$. So, $\frac{1}{p}$ is a bounded entire function, and hence must be constant by Theorem 8.1.2. This contradicts the assumption that p is non-constant, and hence, some root z_0 of p exists in \mathbb{C} .

Recall Theorem 4.1 that if $f \in C(\mathcal{U})$ for some open convex set \mathcal{U} and $\oint_{\partial \Delta} f = 0$ for all $\Delta \subseteq \mathcal{U}$, then there exists $g \in Hol(\mathcal{U})$ such that g' = f. One corollary of this is that any such function f must be holomorphic on the set \mathcal{U} . A stronger version of this result is the following.

Theorem 8.1.4 (Morera's theorem) Let $\mathcal{O} \subseteq \mathbb{C}$ be any open set, and $f \in C(\mathcal{O})$. Then, $f \in Hol(\mathcal{U})$ if and only if $\oint_{\partial \Delta} f = 0$ for all $\Delta \subseteq \mathcal{O}$.

Proof. If $f \in Hol(\mathcal{O})$, we get $\oint_{\partial \Delta} f = 0$ for all $\Delta \subseteq \mathcal{O}$ by Cauchy's integral theorem.

Conversely, suppose that $\oint_{\partial\Delta} f = 0$ for all $\Delta \subseteq \mathcal{O}$. Then, as any $\Delta \subseteq \mathcal{O}$ is a closed convex set, we get an open convex set \mathcal{U} containing Δ which is also contained in \mathcal{O} . Over \mathcal{U} , we apply Theorem 4.1 and get a local primitive of f. In particular, $f \in \mathsf{Hol}(\mathcal{U})$. Therefore, as f is holomorphic at each point of \mathcal{O} , we get $f \in \mathsf{Hol}(\mathcal{O})$ and so we are done.

Theorem 8.1.5 Let $\{f_n\}_{\mathbb{N}} \subseteq Hol(\mathcal{O})$. Suppose $f_n \to f$ uniformly. Then, $f \in Hol(\mathcal{O})$.

Remarks:

- (1) We define $f_n \to f$ uniformly on an open set, if the convergence is uniform on any compact subset of the open set.
- (2) The result fails miserably for $\mathbb{R}!$ For example, the Weierstrass approximation theorem says $\overline{\mathbb{R}[x]} \simeq C([0,1],\mathbb{R})$, that is, any continuous function can be approximated uniformly by polynomial functions, which are not just smooth but in fact their derivatives vanish after some finite order.

Proof. By uniform convergence, $f \in C(\mathcal{O})$. Fix $\Delta \subseteq \mathcal{O}$. As $f_n \in Hol(\mathcal{O})$, we get by Morera's theorem that $\oint_{\partial \Delta} f = 0$. But,

$$\oint_{\partial\Delta} f = \oint_{\partial\Delta} \lim_{n \to \infty} f_n = \lim_{n \to \infty} \oint_{\partial\Delta} f_n = 0$$

and so by Morera's theorem again, $f \in Hol(\mathcal{O})$.

Theorem 8.1.6 Let the same assumptions hold as Theorem 8.1.5. Then, for all $k \ge 1$,

$$f_n^{(k)} \to f^{(k)}$$

uniformly on \mathcal{O} .

Proof. It is clearly enough to show the result for k = 1, that is, $f'_n \to f'$ uniformly. Further, it is enough to show that $f'_n \to f'$ uniformly on the closed discs $B_r(z_0) \subseteq \mathcal{O}$. Fix r, z_0 and δ small such that

$$\overline{B_r(z_0)} \subseteq \overline{B_{r+\delta}(z_0)} \subseteq \mathcal{O}.$$

Consider $z \in \overline{B_r(z_0)}$ and let C be a circle of radius R centered at z. Assume $\frac{\delta}{2} < R < \delta$ so that $C \subseteq \mathcal{O}$. By Theorem 8.1.1,

$$\begin{split} |(f_n - f)'(z)| &\leq \frac{1}{R} \|f_n - f\|_C \\ \implies |(f_n - f)'(z)| &< \frac{1}{\delta} \|f_n - f\|_C \\ \implies |(f_n - f)'(z)| &< \frac{1}{\delta} \|f_n - f\|_{\overline{B_{r+\delta}(z_0)}} \\ \implies \|f'_n - f'\|_{\overline{B_r(z_0)}} &\leq \frac{1}{\delta} \|f_n - f\|_{\overline{B_{r+\delta}(z_0)}} \end{split}$$

As $f_n \to f$ uniformly, we get that $f'_n \to f'$ uniformly from the above inequality.

8.2 Zeroes of Analytic Functions

=

Let \mathcal{O} be an open subset of \mathbb{C} , $f \in Hol(\mathcal{O})$. We define the set of zeroes of f,

$$\mathcal{Z}(f) = \{ z \in \mathcal{O} \mid f(z) = 0 \}$$

Let $z_0 \in \mathcal{Z}(f)$. Consider the power series of f near z_0 ,

$$f(z) = \sum_{n \ge m} a_n (z - z_0)^n$$

We have the following two cases:

(i) There exists $m_0 \in \mathbb{N}$ such that $a_n = 0$ for all $n < m_0$ and $a_{m_0} \neq 0$.

Definition 8.2.1 \blacktriangleright Order of a zero In this case, we define that z is a zero of f of (finite) order m_0 , and write $\operatorname{Ord}(f; z_0) = m_0$.

We have in this case, for $z \in B_r(z_0)$,

$$f(z) = (z - z_0)^{m_0} g(z),$$

where $g(z_0) \neq 0$ and $g \in \text{Hol}(B_r(z_0))$. As $g \in C(B_r(z_0))$ in particular, there is $r' \leq r$ such that $g(z) \neq 0$ for all $z \in B_{r'}(z_0)$. Therefore, $f(z) \neq 0$ for all $z \in B_{r'(z_0)} \setminus \{z_0\}$. We have thus proved the following theorem:

Theorem 8.2.1 Let $f \in Hol(\mathcal{O})$ for \mathcal{O} a domain. If $z_0 \in \mathcal{Z}(f)$ is a finite order zero of f, z_0 is an isolated point of $\mathcal{Z}(f)$.

(ii) $a_n = 0$ for all $n \ge 0$.

Definition 8.2.2	
In this case, we define that z is a zero of f of infinite order.	J
We have in this case, $f \equiv 0$ on $B_r(z_0)$ for some $r > 0$. This proves the following theorem.	

Theorem 8.2.2 The set

$$\widetilde{\mathcal{O}} = \{ z \in \mathcal{Z}(f) \mid z \text{ an infinite zero of } f \}$$

is open.

The following theorem is an easy consequence of the above results but it is a immensely useful result by itself.

Theorem 8.2.3 (Nature of zeroes) Let $f \in Hol(\mathcal{O})$ with \mathcal{O} a domain in \mathbb{C} and suppose f is not identically zero. Then all zeroes of f are of finite order and are isolated.

Proof. We know $\widetilde{\mathcal{O}}$ is open. We will show that it is also closed. Consider $z_0 \in \mathcal{O} \setminus \widetilde{\mathcal{O}}$. Then, there is $m \geq 0$ such that $f^{(m)}(z_0) \neq 0$. By continuity, there is R > 0 such that $f^{(m)}(z) \neq 0$ for all $z \in B_R(z_0) \subseteq \mathcal{O} \setminus \widetilde{\mathcal{O}}$. Hence, $\widetilde{\mathcal{O}}$ is a clopen set, and as it is not the full set \mathcal{O} , it must be empty. Therefore, all zeroes of f are of finite order, and they are isolated by the above results. \Box

Corollary

Let $f \in Hol(\mathcal{O})$, \mathcal{O} a domain. If $\mathcal{Z}(f)$ has a limit point in \mathcal{O} , then $f \equiv 0$.

The above result can be restated as follows:

Theorem 8.2.4 (Identity theorem) Suppose $f, g \in Hol(\mathcal{O})$, \mathcal{O} a domain. If f = g on $X \subseteq \mathcal{O}$ which has a limit point in \mathcal{O} , then f = g on all of \mathcal{O} .