Lecture 9

Recall in last lecture we proved ‘Identity theorem’. If f € Hol(O) and if the zero set Z(f) has

limit point, then f is identically 0 over O. For example,
Example- f(z) =sin 12, z € D, it is 0 when ever, (1+2)/(1—z) = 2nr for integer n, i.e. z =

This is a countable set and this sequence, do not have any limit point in .
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Theorem 9.0.1 (Cauchy Integral theorem for simply connected domain) Let f €
Hol(O). Then for any piece-wise smooth and closed curve ~,
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Proof. We know f is C! as it is holomorphic. We can use Green’s theorem to get,
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Since f € Hol(O) we have, df = 0 and thus the integral is zero. [ |
REMARK : The roots of holomorphic functions are in some sense ‘equivalent’ to roots of polynomials.

Theorem 9.0.2 (Maximum Modulus Principle ;MMP) Let, f € Hol(O), where O is
domain and |f(z)] < |f(a)| for some « € O. Then f = constant.

Proof. Let us consider the set, C = {z € O :|f(z)| = |f(a)|}. Since, this set is non-empty it is a
closed set. Now, we will prove this is open as well, then by connectedness of O we can say, C' is the
whole set, and hence |f] is constant over this domain = f is constant.

Claim- C is open, i.e. ever point is an interior point.
Proof. Fix zg € C, then there exists R > 0 such that B,(z9) C O. Consider, r < R. Then,
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We now convert this in polar form. Define, ¢ = z + 7, 6 € [0.27). Therefore we have,

[f(@) = [f(z)] =
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But, [f(a)| > |f(2)] for all z € O. Thus, 5= 027T (If(a)] = | f(z +re?)|) df < 0. From the above
inequality and using continiuity we get |f(a)| = | fz+ rei9)|. As this equality holds for all r < R
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we can say this equality holds over Br(zp). So, Br(z9) C C. Thus C is open. With this we have
finished the proof of Claim as well as the theorem. |

COROLLARY. Let, f € Hol(O) and in this open set f(z) # 0 for all z. Suppose, |f(2)] > |f(a)],
for all z. Then f is constant on this domain. [For proof just use MMP on 1/ f]

Theorem 9.0.3 (Open Mapping Theorem) Let f is a holomorphic function on O and let
it be a non-constant function. Then f is an open map.

Proof. (CARATHEODORY) Let, O C O open. To prove O is open pick a € O and WLOG f(a) =0
contained in f(O).

Claim- There exist € > 0 such that B.(0) C f(O) for some € > 0.

Proof. As f # constant, there exist a disc D containing a such that D € O and 0 ¢ f(D \ {a}).
Evidently f(D) C f(O). Thus enough to prove that for any such disc, there exist B.(0) C f(D).
There exists a circle C' centered at a such that C € D\ a. Set, € := 1/2inf {|f(2)| : z € C} > 0.
Set, D = X enough to show that B.(0) C D. Now, fix w € B.(0) (in other words |w| < ¢).
Define n(z) := f(z) — w, for all z in the set D. Enough to prove, n has zero in D. We know,
n € Hol(D C domain ). Now |n(a)| <e. Also, z € C, [n(z)| > |f(2)] — |w| > e. The MMP states
that maxima or minima must occur at boundary. This is a contradiction !! The n has a zero in the
set D, which completes the proof. |
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