
Lecture 9

Recall in last lecture we proved ‘Identity theorem’. If f ∈ Hol(O) and if the zero set Z(f) has
limit point, then f is identically 0 over O. For example,

Example- f(z) = sin 1+z
1−z , z ∈ D, it is 0 when ever, (1+z)/(1−z) = 2nπ for integer n, i.e. z = nπ−1

nπ+1 .
This is a countable set and this sequence, do not have any limit point in D.

Theorem 9.0.1 (Cauchy Integral theorem for simply connected domain) Let f ∈
Hol(O). Then for any piece-wise smooth and closed curve γ,∮

γ

f(z) dz = 0

Proof. We know f is C1 as it is holomorphic. We can use Green’s theorem to get,∮
γ

f dz = 2

∫
Σγ

∂̄f dx dy

Since f ∈ Hol(O) we have, ∂̄f = 0 and thus the integral is zero. ■
Remark : The roots of holomorphic functions are in some sense ‘equivalent’ to roots of polynomials.

Theorem 9.0.2 (Maximum Modulus Principle ;MMP) Let, f ∈ Hol(O), where O is
domain and |f(z)| ≤ |f(α)| for some α ∈ O. Then f ≡ constant.

Proof. Let us consider the set, C = {z ∈ O : |f(z)| = |f(α)|}. Since, this set is non-empty it is a
closed set. Now, we will prove this is open as well, then by connectedness of O we can say, C is the
whole set, and hence |f | is constant over this domain ⇒ f is constant.

Claim- C is open, i.e. ever point is an interior point.

Proof. Fix z0 ∈ C, then there exists R > 0 such that Br(z0) ⊆ O. Consider, r < R. Then,

|f(α)| = |f(z)| =

∣∣∣∣∣ 1

2πi

∫
Cr(z0)

f(ζ)

ζ − z
dζ

∣∣∣∣∣
We now convert this in polar form. Define, ζ = z + reiθ, θ ∈ [0.2π). Therefore we have,

|f(α)| = 1

2π

∣∣∣∣∫ 2π

0

f(z + reiθ)

reiθ
reiθi dθ

∣∣∣∣
=

1

2π

∣∣∣∣∫ 2π

0

f(z + reiθ) dθ

∣∣∣∣
≤ 1

2π

∫ 2π

0

∣∣f(z + reiθ)
∣∣ dθ

But, |f(α)| ≥ |f(z)| for all z ∈ O. Thus, 1
2π

∫ 2π

0

(
|f(α)| −

∣∣f(z + reiθ)
∣∣) dθ ≤ 0. From the above

inequality and using continiuity we get |f(α)| =
∣∣f(z + reiθ)

∣∣. As this equality holds for all r < R
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we can say this equality holds over BR(z0). So, BR(z0) ⊆ C. Thus C is open. With this we have
finished the proof of Claim as well as the theorem. ■

Corollary. Let, f ∈ Hol(O) and in this open set f(z) ̸= 0 for all z. Suppose, |f(z)| ≥ |f(α)|,
for all z. Then f is constant on this domain. [For proof just use MMP on 1/f ]

Theorem 9.0.3 (Open Mapping Theorem) Let f is a holomorphic function on O and let
it be a non-constant function. Then f is an open map.

Proof. (Caratheodory) Let, Õ ⊆ O open. To prove O is open pick α ∈ Õ and WLOG f(α) = 0
contained in f(Õ).

Claim- There exist ε > 0 such that Bε(0) ⊆ f(Õ) for some ε > 0.

Proof. As f ̸= constant, there exist a disc D̃ containing α such that D̃ ⊆ Õ and 0 /∈ f(D̃ \ {α}).
Evidently f(D̃) ⊆ f(Õ). Thus enough to prove that for any such disc, there exist Bε(0) ⊆ f(D̃).
There exists a circle C centered at α such that C ⊆ D̃ \ α. Set, ε := 1/2 inf {|f(z)| : z ∈ C} > 0.
Set, D = ΣC enough to show that Bε(0) ⊆ D. Now, fix w ∈ Bε(0) (in other words |w| < ε).
Define η(z) := f(z) − w, for all z in the set D. Enough to prove, η has zero in D. We know,
η ∈ Hol(D ⊆ domain ). Now |η(α)| < ε. Also, z ∈ C, |η(z)| ≥ |f(z)| − |w| > ε. The MMP states
that maxima or minima must occur at boundary. This is a contradiction !! The η has a zero in the
set D, which completes the proof. ■
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