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1 Introduction and Motivation

We first recall the definition of L2- cohomology on a Riemannian manifold, and then proceed to analyse
its connection with Hodge theory.
Let M be a Riemannian manifold. For ω ∈ Ωr(M), we define the L2 norm to be

∥ω∥2 =
(∫

M
∥ω∥2 dV

) 1
2

,

where the norm in the integrand is the one induced by the metric, and V is the volume form on M . A
priori, the L2 norm of an arbitrary form need not be finite. Of course, if the manifold is compact to begin
with this never happens. We define the subspace of L2 r−forms to be

Lr
(2)(M ;C) = {ω ∈ Ωr(M) | ∥ω∥2, ∥dω∥2 < ∞}.

The homology groups of the complex (L•
(2)(M ;C), d) are the L2- cohomology groups of the manifold M ,

i.e,

Hr
(2)(M ;C) =

{
ω ∈ Lr

(2)(M) | dω = 0
}

{
ω ∈ Lr

(2)(M) | ω = dζ, ζ ∈ Lr−1
(2) (M)

} .

Recall that two Riemannian metrics g, h on M are said to be quasi-isometric if there is a constant K such
that at each point p ∈ M , K−1gp ≤ hp ≤ Kgp. This clearly implies the same inequality also holds for
the induced norms at each point and so, Lr

(2)(M, g) = Lr
(2)(M,h) for all r and hence the corresponding

cohomology groups are also isomorphic.

Recall the Hodge star ⋆ : Ωr(M) → Ωm−r(M), where m = dimM . It can be defined as the unique linear
operator satisfying α∧ (⋆β) = ⟨α, β⟩V , for all α, β ∈ Ωr(M). It can be shown that δ = ⋆d⋆ is the adjoint
of d, i.e, ⟨α, dβ⟩ = ⟨δα, β⟩. The Laplacian on M is defined as ∆ = (d+ δ)2 = dδ + δd. The differential
forms that are in the kernel of ∆ are defined to be the harmonic forms on M . Finally, it can be checked
that if M is compact, any harmonic form ω is closed and co-closed, i.e, dω = 0, δω = 0. The Hodge
theorem states that there is a unique harmonic form in each (de Rham) cohomology class of M , and thus
the de Rham cohomology groups are isomorphic to the space of harmonic forms (for each degree). As ⋆ω
is harmonic if ω is, we get an isomorphism Hr(M) ≃ Hm−r(M) induced by the Hodge star, and this can
in fact be identified with the usual Poincaré isomorphism.

We now consider the problem of how much of the Hodge theory above remains true for L2- cohomology
of (non-compact) manifolds. The definitions of the Hodge star, the Laplacian and harmonic forms clearly
still work if we restrict to L•

(2)(M). But, a harmonic form need not be closed and co-closed in this case as
the following example shows.

Example 1

The 0−form x2 − y2 is harmonic and square-integrable on the unit disc B1(0) ⊆ R2, under the
Euclidean metric. But it is not closed as it is non-constant.
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Hence, a harmonic form may not define a cohomology class. To correct for this, we restrict to the space
Hr(M) of closed and co-closed harmonic forms in Lr

(2)(M). We also have a natural map ω 7→ [ω]

mapping a form in Hr(M) to its cohomology class in Hr
(2)(M). It is not known whether this map is an

isomorphism, but Cheeger-Goresky-MacPherson (’82) showed that it is an injection if M is complete
under the metric.

We say that the Strong Hodge Theorem holds for M if the map H•(M) → H•
(2)(M) is an isomorphism.

We always have an isomorphism Hr(M) ≃ Hm−r(M) induced by ⋆. As a consequence, L2- cohomology
always satisfies Poincaré duality! This motivates us to ask whether L2- cohomology can in fact be realised
as the (middle perversity) intersection cohomology of a suitable compactification of M . A case in which
this is natural is the following: Let X be a complex projective variety and M = Xns = X \Σ, so that X is
a compactification of M . Consider β ∈ Li−1

(2) (M). It can be shown that for almost all ξ ∈ ICi(X),
∫
ξ dβ

exists and satisfies ∫
ξ
dβ =

∫
∂ξ

β.

Note that |ξ| meets Σ in a subset of dimension at most i− 2 by definition of ICi(X), and so the integral
of dβ can be defined over ξ. Thus we get a pairing

H i
(2)(X \ Σ)⊗ IHi(X) → C,

or equivalently,
H i

(2)(X \ Σ) → (IHi(X))∨ ≃ IH i(X).

This is exactly the usual de Rham isomorphism in the case when X = X \ Σ is non-singular. In the
major part of today’s lecture, we will discuss two classes of spaces where the natural map H∗

(2)(X \Σ) →
(IHi(X))∨ ≃ IH i(X) will be an isomorphism. In both cases, it is also true that the strong Hodge
theorem holds and so we have for such spaces X that,

H•(X \ Σ) ≃ H•
(2)(X \ Σ) ≃ IH•(X).

It can be said that the main motivation behind trying to analyse the relation between L2−cohomology
and intersection cohomology is this evidence towards their being the same. Cheeger, Goresky and
MacPherson conjectured that this is indeed the case for all projective varieties if the metric on Xns is
Kähler. However, the isomorphism unfortunately does not hold in this generality.

Example 2 (MathOverflow (Dona Arapura))

Let f : C → B1(0) be a diffeomorphism. It can be checked that the pullback of the Poincaré
metric is Kähler, but H1

(2)(P \ {∞}) = ∞ because f∗(zndz) is an infinite family of harmonic
1−forms. As intersection cohomology is always finite dimensional, the two cannot be isomorphic
in this case.

2 L2- cohomology of a punctured cone

We start by discussing the simplest example: a punctured cone over a Riemannian manifold. For a
compact Riemannian manifold (Y, gY ), consider the manifold

c∗Y = cY \ {vertex} ≃ (0, 1)× Y,

with the metric g = dt2 + t2π∗gY , where π : c∗Y → Y is the projection. It is easily checked that any
ω ∈ Ωi(c∗Y ) decomposes as ω = η + dt ∧ ζ, where η, ζ are i and i − 1 forms respectively that do not
involve t. For each t, we can think of η, ζ as defining differential forms on Y . The induced norm is given
by,

∥ω(t, y)∥2 = t−2i∥η(t, y)∥2Y + t−2(i−1)∥ζ(t, y)∥2Y .
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Theorem 1 (Cheeger, ’80)

Let c∗Y be given the metric g defined above. Then,

H i
(2)(c

∗Y ) =

{
H i(Y ), i ≤ m

2

0, i > m
2

.

Note that H i(Y ) ≃ H i
(2)(Y ) as Y is compact. This was one of the first computations of L2−cohomology

in the direction of singular spaces done by Cheeger. The connection with intersection cohomology was
first conceived because of the similarity of this result with that for the intersection homology of a cone
over a manifold.

Proof. (Sketch) Let π : c∗Y → Y be the projection. If ω ∈ Ωi(Y ), then we have ω(y) =
∑

ωα(Y ) dyα.
The form π∗ω is locally given by, π∗ω(t, y) =

∑
ωα(y) dy

α. We then have, ∥π∗ω(t, y)∥2 = t−2i∥ω(y)∥2Y .
As the volume form of c ∗ Y at a point (t, y) differs from that of Y at y by a factor of tm, we get∫

c∗Y
∥π∗ω∥2dV =

∫ 1

0

∫
Y
t−2i∥ω(y)∥2Y dV dt .

As Y is compact we get π∗ω is square-integrable iff ω = 0 or
∫ 1
0 tm−2i dt < ∞. That is, i ≤ m

2 . Thus,
we get a map π∗ : Li(Y ) → Li(c∗Y ) for such i and this induces a map H i(Y ) → H i

(2)(c
∗Y ). It can

be shown that for all i ≤ m
2 , this is an isomorphism. Similar ideas can be used to show that for higher

dimensions the intersection cohomology vanishes.

3 Varieties with isolated conical singularities

Let X ⊆ CPn be a quasi-projective variety with isolated singularities Σ = {x1, . . . , xq}. X is said
to have isolated conical singularities if for each xj , there is a compact Riemannian manifold Yj and a
neigbourhood Uj ⊆ X of xj such that Uj ≃ cYj and Uj \ {xj} ≃ c∗Yj . The second kind of isomorphisms
are quasi-isometries of Riemannian manifolds and we consider X \ Σ with the restriction of the Fubini-
Study metric. We discuss briefly how such a variety satisfies both the strong Hodge theorem and
Cheeger’s conjecture.

Lemma 1

For all x ∈ X, there are arbitrarily small open neigbourhoods U such that the natural maps
H•

(2)(U) → IH•(U) are isomorphisms.

Now, we know there exists a natural map H•
(2)(X) → IH•(X) from our introductory remarks. It is an

easy consequence of the sheaf-theoretic formulation of intersection homology and the previous lemma
that the following theorem holds.

Theorem 2 (Cheeger, ’80)

The natural map H•
(2)(X) → IH•(X) is an isomorphism if X is quasi-projective variety with

isolated conical singularities.

With some work it can also be deduced from the lemma that the strong Hodge theorem holds for all
such X, simply because the L2−cohomology is finite dimensional in this case (Cheeger - Goresky -
MacPherson, 1982).
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4 Locally symmetric varieties

4.1 Definitions

We now come to perhaps the most important case of interest. Let G be a semi-simple Lie group with finite
center and K ≤ G a maximal compact subgroup. It is easily checked that D = G/K is a homogeneous
space under the natural left G−action. D is a symmetric space.

Fact: There exists a unique θ ∈ Aut(G) such that θ2 = Id and K is the fixed set of θ. θ is then called the
Cartan involution of D.
Consider the Killing form on g: B(x, y) = tr (adg(x) adg(y)). It is a basic fact that B is invariant under
adjoint action of K on g and restricts to a positive definite form on the negative eigenspace of the map
induced by θ. This space is naturally identified with the tangent space of D at eK, and as this is preserved
by the adjoint action of K, we get a G−invariant metric on D by translation. It can be shown that D is
complete under this metric.

Example 3

Consider G = Sp(2n,R) = {M ∈ GL(2n,R) | ⟨Mx,My⟩J = ⟨x, y⟩J}, where J =

(
0 −In
In 0

)
.

It is easy to see that if M ∈ G, then M is a block matrix
(
A B
C D

)
such that AtC,BtD are

symmetric and AtD − CtB = In. The corresponding Lie algebra is given by,

g = sp(2n,R) =
{
M ∈ End(2n,R) | M tJ + JM = 0

}
.

Again, if M ∈ g, then it has a block matrix form
(
A B
C −At

)
, where B,C are symmetric. The

Killing form of g is given by B(M,N) = 2(n+ 1) tr(MN). Consider now the subgroup K ≤ G
given by,

K =

{(
A B
−B A

)
| AtB = BtA,AtA+BtB = In

}
.

It can be shown thatK is a maximal compact subgroup ofG, in fact it is the unique one upto isomor-

phism. Further, K ≃ U(n) by the map
(

A B
−B A

)
7→ A+ιB. Also, K =

{
M ∈ G | M t = M−1

}
and so the Cartan involution is θ(M) = M−t. The induced map on g is M 7→ −M t, and so the
negative eigenspace is {(

A B
C −A

)
| A,B,C ∈ Sym(n,R)

}
.

Whenever the intersection of K with every irreducible factor of G contains a circle (i.e, it is 1−dimensional),
there exists a G−invariant complex structure on D such that the metric induced is Kähler with respect to
it. In such a case, we call D a Hermitian symmetric space.

Now suppose G ↪→ GL(n,R) is a faithful, finite dimensional representation. We say that a discrete
subgroup Γ ≤ G is an arithmetic subgroup if it commensurable with G(Z), i.e, Γ ∩ G(Z) has finite
index in both Γ and G(Z). Note that a particular subgroup being arithmetic depends on the specific
representation chosen; however it can be shown that any two such choices lead to commensurable
classes.

Example 4

The subgroup Γ = Sp(2n,Z) ≤ Sp(2n,R) is an arithmetic subgroup.

A locally symmetric space is a quotient of the form X = Γ\D = Γ\G/K. We consider X with the metric
induced from D. In general, Γ acts with finite stabilisers, and so X is a Riemannian orbifold. However,
this is causes no actual problems apart from making the arguments slightly more involved, and so we
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restrict to the case where the action is indeed free. Some motivation for the name is the following: Given
any Riemannian manifold M and p ∈ M , there exists a convex neigbourhood U ⊆ TpM of 0 such that
the exponential map exp is a diffeomorphism from U onto the image. Hence, (v 7→ −v) in TpM induces a
smooth involutive diffeomorphism of the neigbourhood expU . When M is locally symmetric, this map
is a local isometry at each p. In fact, it can be shown that any manifold with this property is of the form
Γ\G/K for some Lie group G, compact subgroup K and discrete subgroup Γ.

We say that X = Γ\D is Hermitian when D is. Again, it can be shown that X has a complex structure
inherited from D with respect to which its metric is Kähler. There is a much stronger result: Baily
and Borel have shown that any Hermitian locally symmetric space can be given a structure of a quasi-
projective variety; however the metric may not arise as a restriction of the Fubini-Study metric. We call X
a locally symmetric variety when we consider it with this additional structure of a quasi-projective variety.

Example 5

Let G = SL(2,R) and K = SO(2,R). We identify the quotient D = G/K with the upper half
planeH2 = {z ∈ C | ℑz > 0} as follows. G acts onH2 by the Möbius transformations:(

a b
c d

)
7→

(
z 7→ az + b

cz + d

)
.

The stabiliser of ι is then exactly K and so we get the required identification from the fact that the
action is transitive. The natural metric is the hyperbolic metric

ds2 =
dx2 + dy2

y2
.

Because K = SO(2,R) ≃ S1, we are in the Hermitian case, and the complex structure here is just
the usual one induced fromC. Now consider Γ = SL(2,Z). This is clearly an arithmetic subgroup.
The Hermitian locally symmetric variety Γ\D is the moduli space of elliptic curves. Sketch: identify
elliptic curves with complex tori; use the fact that the Teichmüller space of such tori isH2 and the
mapping class group is PGL(2,R) and so, the moduli space must beH2/PGL(2,R) ≃ Γ\D.

Example 6

We can generalise the above example in the following way. Consider G = Sp(2n,R),K = U(n) ≤
G,Γ = Sp(2n,Z). Then, D = G/K is the Siegel upper half space

Hn = {Ω ∈ Sym(n,C) | ℑΩ > 0}.

This is because the following map defines a transitive action of G on Hn:(
A B
C D

)
7→

(
Ω 7→ (AΩ+B)(CΩ+D)−1

)
and it can be checked that the stabiliser of ιI is K. It is then a fact that An = Γ\D can be identified
with the isomorphism classes of principally polarized abelian varieties, and forms a (coarse) moduli
space.

4.2 Zucker’s conjecture

Let X be a locally symmetric variety. Consider H•
(2)(X;C). As the metric is complete, we know

Hr(X) → Hr
(2)(X;C) is an injective map. In fact it is known that if X is Hermitian then this map is

an isomorphism. So, as Poincaré duality holds for L2−cohomology, we again come to the question of
whether we can realise it as the intersection cohomology of a suitable compactification. In fact, when X
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is Hermitian, we also obtain a Hodge decomposition using what are called mixed Hodge modules, but we
do not address that here.

Any locally symmetric variety has natural compactifications called Satake compactifications. Informally,
these are obtained by adding in lower dimensional locally symmetric varieties and what are called rational
boundary components. If X = Γ\G/K, and G hasQ−rank r, it can be shown that there are 2r−1 Satake
compactifications. However, if X is Hermitian, there is a distinguished Satake compactification X∗ which
also has the structure of a complex projective variety. This is known as the Baily-Borel compactification
of X .

Example 7

If X = An is the moduli space of principally polarized abelian varieties of dimension n, X∗ is
obtained by adding a rational boundary component for each Ai, i < n.

Now assume that X is Hermitian, and let X∗ be its Baily-Borel compactification. We have a natural map
H•

(2)(X;C) → IH•(X∗;C). We generalise this as follows: Let E be an irreducible finite-dimensional
C−representation of G, say ρ : G → GL(E). Then, G has a natural action on the trivial bundle D ×E
over D defined by:

g · (hK, e) = (ghK, ρ(g)e).

The quotient E = Γ (D × E) is a bundle on X with fiber E. The flat connection on D × E descends to a
flat connection on E and so, E is a local system or a locally constant sheaf.

There exists (Borel, Wallach ’80) a Hermitian metric on E that satisfies ⟨e1, ρ(g)e2⟩ =
〈
ρ(θ(g)−1)e1, e2

〉
.

Such a metric is called admissible, and it can be shown that it is unique upto scaling. It is also a fact that
such a metric is invariant under conjugation by K and so we get a Hermitian metric on D ×E defined as

µgK(e1, e2) =
〈
ρ(g−1)e1, ρ(g

−1)e2
〉
.

This metric µ finally descends to a Hermitian metric on E . Note that even though E is a flat bundle, it
need not be that the induced metric is flat. We now consider cohomology with coefficients in the metrised
bundle E and get a map H•

(2)(X; E) → IH•(X∗; E).

Theorem 3 (Zucker ’80, Looijenga ’87, Saper-Stern ’87)

For X,E, E as above, the map above is an isomorphism.

4.3 More on Zucker’s conjecture

The precise version of the conjecture states that the complexes L•
(2)(X; E) and IC•(X∗; E) are quasi-

isomorphic.
Significance:

(i) There is an isomorphism

H•
(2)(X; E) ≃ H•(g,Lie(K);L2(Γ\G)∞ ⊗ E),

where the right object is the relative Lie algebra cohomology.

(ii) As mentioned before, we already have a Hodge theory for Hermitian varieties using mixed Hodge
modules. This theorem implies that the same holds for intersection cohomology.

Basic strategy: We use an axiomatic characterization (upto quasi isomorphism) of IC• and prove that
L•
(2) also satisfies these axioms. The key point turns out to be that every point on strata of codimension j

should have a basis of neigbourhoods {Uα} such that IH•(Uα; E) = 0 for all i ≥ j. It is then enough to
show that H i

(2)(Uα ∩X; E) = 0 for all i ≥ j.

Looijenga’s proof: This proceeds inductively on codimentsion, and eliminates the mention ofL2−cohomology
using Lie theoretic and geometric interpretation of certain weights of roots that come into play.
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Saper-Stern’s proof: This is a direct and more analytic proof. It uses classical estimates of harmonic
forms and the Laplacian cleverly, and it turns out that these estimates actually reduce the vanishing of
H•

(2) to an appropriate bound of weights of roots.

Borel’s conjecture: Borel extended Zucker’s conjecture for equal rank locally symmetric varieties; this
meansC−rank of G is the same as theC−rank of K. It was a known fact that Hermitian varieties were
all of equal rank.

Rapoport-Goresky-MacPherson conjecture: This says that if X̂ is the reductive Borel-Serre com-
pactification (introduced by Zucker), then IH•(X∗; E) ≃ IH•(X̂; E).

Saper’s L−modules: This is a combinatorial model for a constructible complex of sheaves. Saper has
showed how to use these to prove both Borel’s conjecture and the Rapoport-Goresky-MacPherson
conjecture, and even how to interpret L2−cohomology in this framework.
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