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Introduction

• Hyperbolic polygons and convex polyhedra are rigid : they are determined
uniquely up to isometry by only their angles.

• Hyperbolic surfaces show the opposite behaviour: loosely, there is a 6g − 6
dimensional space of distinct hyperbolic structures on any closed surface of
genus g ≥ 2.

• Mostow’s result is that the rigidity behaviour is what persists in higher
dimensions.
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Statement of the Theorem

Theorem 1.1 (Mostow, 1973)

Let n ≥ 3 and M1,M2 be two n−dimensional compact connected oriented
hyperbolic manifolds. If f : M1 → M2 is a homotopy equivalence, there exists
an isometry q : M1 → M2 that is homotopic to f .
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Statement of the Theorem

Theorem 1.2 (Sharper Formulation)

Let Mi ≃ Hn/Γi , i = 1, 2, be as above. If there is a group isomorphism
φ : Γ1 → Γ2, then there is an isometry q ∈ Isom(Hn) such that

q ◦ γ = φ(γ) ◦ q,

holds for all γ ∈ Γ1. In particular, q induces an isometry φ̃ : M1 → M2 for
which φ̃∗ = φ.
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Motivation

• Rigidity of hyperbolic polyhedra

• Behaviour of lattices in “nice” groups like SO(n, 1).

• Marden’s isomorphism theorem:

Theorem (Marden, 1974)

Let G be a geometrically finite Kleinian group without any elliptics, and
Φ : Ω(G ) → Ω(H) is a conformal map that induces an isomorphism
ϕ : G → H by the correspondence ϕ(g) = Φ◦g ◦Φ−1. Then Φ is induced
by an isometry (Möbius transformation) A and ϕ(g) = AgA−1.
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by an isometry (Möbius transformation) A and ϕ(g) = AgA−1.



Mostow
Rigidity

Aaratrick Basu

Mostow’s
Theorem

An Application

Gromov’s
Proof

Motivation

• Rigidity of hyperbolic polyhedra

• Behaviour of lattices in “nice” groups like SO(n, 1).

• Marden’s isomorphism theorem:

Theorem (Marden, 1974)

Let G be a geometrically finite Kleinian group without any elliptics, and
Φ : Ω(G ) → Ω(H) is a conformal map that induces an isomorphism
ϕ : G → H by the correspondence ϕ(g) = Φ◦g ◦Φ−1. Then Φ is induced
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Extensions

Theorem 1.3 (Prasad, 1974)

Mostow’s result holds if we weaken the compactness assumption to the
requirement of finite volume.
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Extensions

Theorem 1.4 (Thurston et al, 1980s)

If f : M1 → M2 is a smooth map such that vol(M1) = |deg f | vol(M2), then f
is homotopic to a locally isometric covering of M1 onto M2, of degree |deg f |.
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Methods of Proof

Consider the lift f̃ of f :

Hn Hn

M1 M2

f̃

p1 p2

f

Note that f̃ ◦ γ = f∗(γ) ◦ f̃ holds on Hn, for all γ ∈ Γ1, for a suitable choice of
basepoints.
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Methods of Proof

Theorem

Homotoping f to be smooth, f̃ is a quasi-isometry which extends to a con-
tinuous map f̃ : H

n → H
n
, such that f̃

∣∣
∂Hn is injective and f̃ ◦ γ = f∗(γ) ◦ f̃

holds on all of H
n
, for all γ ∈ Γ1.



Mostow
Rigidity

Aaratrick Basu

Mostow’s
Theorem

An Application

Gromov’s
Proof

Methods of Proof

• Gromov: f̃
∣∣
∂Hn is induced by an isometry, which satisfies the requirements. This

is shown by looking at images of ideal simplices, and using the Gromov norm.

• Tukia: Same strategy, but uses analytic techniques from the theory of
quasi-conformal maps.

• Besson-Courtois-Gallot: Probabilistic approach, using the so-called volume
entropy of Riemannian manifolds.
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• Gromov: f̃
∣∣
∂Hn is induced by an isometry, which satisfies the requirements. This

is shown by looking at images of ideal simplices, and using the Gromov norm.

• Tukia: Same strategy, but uses analytic techniques from the theory of
quasi-conformal maps.

Theorem

Let G be a nonelementary Kleinian group, ζ ∈ Λ(G ) a conical limit
point, and f : S2 → S2 a homeomorphism which is differentiable at ζ
with nonzero derivative. Suppose ϕ : G → H is a homomorphism to
another Kleinian group H such that f ◦ g = ϕ(g) ◦ f . Then f is a Möbius
transformation.

• Besson-Courtois-Gallot: Probabilistic approach, using the so-called volume
entropy of Riemannian manifolds.
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Out(π1(M)) of hyperbolic manifolds

Let Sg be a closed oriented surface of genus g .

Theorem (Dehn-Nielsen-Baer)

Out(π1(Sg )) is isomorphic to Mod(Sg ), and in particular is an infinite group.

Theorem (Hurwitz)

Isom(Sg ) has size at most 84(g − 1).
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Out(π1(M)) of hyperbolic manifolds

Theorem

Let M be a closed oriented hyperbolic manifold of dimension n ≥ 3. Then
Out(π1(M)) ≃ Isom(M), and is hence a finite group.
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The Proof

Let Γ = π1(M). We have a map

θ : Isom(M)→ Out(Γ)

given by f 7→ [f∗], because f∗ is an isomorphism of π1(M, x) onto π1(M, f (x)).
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The Proof

Injectivity

Suppose θ(f ) = [1]. There is a lift f̃ : Hn → Hn of f such that f̃ ◦ γ = γ ◦ f̃ for all
γ ∈ Γ.
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The Proof

Injectivity

Suppose θ(f ) = [1]. There is a lift f̃ : Hn → Hn of f such that f̃ ◦ γ = γ ◦ f̃ for all
γ ∈ Γ.

Let δ ̸= 1 be in the centralizer. As γ ∈ Γ \ {1} is hyperbolic, with unique axis ℓγ , we
get

δ(ℓγ) = γ(δ(ℓγ)) =⇒ δ(ℓγ) = ℓγ ,

and so δ is not parabolic. Let F = Fix(δ). Then, for all γ ∈ Γ \ {1}, ℓγ ⊂ F and
γ(F ) = F .
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Injectivity

Suppose θ(f ) = [1]. There is a lift f̃ : Hn → Hn of f such that f̃ ◦ γ = γ ◦ f̃ for all
γ ∈ Γ.

Let δ ̸= 1 be in the centralizer. As γ ∈ Γ \ {1} is hyperbolic, with unique axis ℓγ , we
get

δ(ℓγ) = γ(δ(ℓγ)) =⇒ δ(ℓγ) = ℓγ ,

and so δ is not parabolic. Let F = Fix(δ). Then, for all γ ∈ Γ \ {1}, ℓγ ⊂ F and
γ(F ) = F .

Fix some x0 ∈ F and a line ℓ0 through x0 that is orthogonal to F . Then, for small ε,

Nε(ℓ0) ∩ (Γ \ {1}) · Nε(ℓ0) = ∅,

and so we get a closed subset of M that is not compact. →←
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The Proof

Surjectivity

Any automorphism of Γ is induced by a homotopy equivalence of M, because M is a
K (Γ, 1) space. Mostow rigidity gives an isometry f which induces the automorphism,
and hence θ is surjective.
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The Proof

Surjectivity

Any automorphism of Γ is induced by a homotopy equivalence of M, because M is a
K (Γ, 1) space. Mostow rigidity gives an isometry f which induces the automorphism,
and hence θ is surjective.

Finiteness

It can be shown that Isom(M) contains finitely many homotopy classes using the
fact that M is compact and hence the sup norm makes Isom(M) into a compact
group. ■



Mostow
Rigidity

Aaratrick Basu

Mostow’s
Theorem

An Application

Gromov’s
Proof

Gromov’s Proof



Mostow
Rigidity

Aaratrick Basu

Mostow’s
Theorem

An Application

Gromov’s
Proof

Outline of Gromov’s proof

(i) Extend f̃ to the boundary ∂Hn as mentioned before.

Hn Hn

M1 M2

f̃

p1 p2

f

(ii) Show that the volume function vol() attains its supremum vn over all geodesic
n−simplices at the regular and ideal n−simplex.

(iii) If {u0, . . . , un} are the vertices of a simplex of volume vn, then the simplex on{
f̃ (u0), . . . , f̃ (un)

}
also has volume vn.

(iv) Show that the above fact implies that f̃ is induced by an isometry of Hn.
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Outline of Gromov’s proof

(i) Extend f̃ to the boundary ∂Hn as mentioned before.

(ii) Show that the volume function vol() attains its supremum vn over all geodesic
n−simplices at the regular and ideal n−simplex.

(iii) If {u0, . . . , un} are the vertices of a simplex of volume vn, then the simplex on{
f̃ (u0), . . . , f̃ (un)

}
also has volume vn.

(iv) Show that the above fact implies that f̃ is induced by an isometry of Hn.
Only step where n ≥ 3 is needed!
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First step

Consider the lift f̃ of f :

Hn Hn

M1 = H
n/Γ1 M2 = H

n/Γ2

f̃

p1 p2

f

Note that f̃ ◦ γ = f∗(γ) ◦ f̃ holds on Hn, for all γ ∈ Γ1, for a suitable choice of
basepoints.
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First step

Theorem

Homotoping f to be smooth, f̃ is a pseudo-isometry which extends to a
continuous map f̃ : H

n → H
n
, such that f̃

∣∣
∂Hn is injective and f̃ ◦γ = f∗(γ)◦ f̃

holds on all of H
n
, for all γ ∈ Γ1.
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First step

f is a homotopy equivalence of compact manifolds, and is hence homotopic to a
smooth one. By compactness we get f and its homotopy inverse have finite
maximum dilatation, and this information can be lifted to get f̃ : Hn → Hn is a
Lipschitz map.
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First step

f is a homotopy equivalence of compact manifolds, and is hence homotopic to a
smooth one. By compactness we get f and its homotopy inverse have finite
maximum dilatation, and this information can be lifted to get f̃ : Hn → Hn is a
Lipschitz map.

Finally, using the fact that there is a compact Dirichlet domain for Γ1 and since lifts
commute with the action of Γ1, we can conclude that f̃ is a pseudo-isometry :

1

C1
d(x1, x2)− C2 ≤ d(f̃ (x1), f̃ (x2)) ≤ C1d(x1, x2).
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First step

Theorem

Any pseudo-isometry P : Hn → Hn extends to a continuous map P : H
n → H

n

that is an injection restricted to the boundary ∂Hn.
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First step

Theorem

Any pseudo-isometry P : Hn → Hn extends to a continuous map P : H
n → H

n

that is an injection restricted to the boundary ∂Hn.

Using the Jordan-Schoenflies theorem, P is in fact a homeomorphism of the sphere
at infinity.
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Second step

Let Sn be the set of all ideal n−simplices in H
n
that have hyperbolic faces.

Definition ▶ Regular simplices

A simplex in H
n
is said to be regular if any permutation of its vertices is

induced by an isometry.
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Second step

Let Sn be the set of all ideal n−simplices in H
n
that have hyperbolic faces.

Definition ▶ Regular simplices

A simplex in H
n
is said to be regular if any permutation of its vertices is

induced by an isometry.

Lemma

Let σ ∈ Sn have vertices ∞, v1, . . . , vn where vi ∈ Rn × {0}. Then σ is
regular if and only if the Euclidean simplex on v1, . . . , vn is regular.
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Second step

Theorem

The volume function vol() restricted to Sn attains its supremum vn exactly
at the regular and ideal n−simplices.
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Second step

Sketch of the proof:

• For n = 2, every ideal triangle is regular and has area v2 = π.

• For n = 3, it is a direct computation that

vol(σ) = Λ(α(σ)) + Λ(β(σ)) + Λ(γ(σ)),

where Λ is the Lobachevsky function

Λ(θ) =

∫ θ

0
− log |sin t|dt,

and so σ is of maximal volume iff α = β = γ = π
3 .
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Sketch of the proof:

• For n = 2, every ideal triangle is regular and has area v2 = π.

• For n = 3, it is a direct computation that

vol(σ) = Λ(α(σ)) + Λ(β(σ)) + Λ(γ(σ)),

where Λ is the Lobachevsky function

Λ(θ) =

∫ θ

0
− log |sin t|dt,

and so σ is of maximal volume iff α = β = γ = π
3 .
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Second step

• For n ≥ 2, we have the inequality

n − 1

n2
≤ vn+1

vn
≤ 1

n
.

Using this inequality and some analysis of the integrals defining the volumes,
the result follows.
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Third Step

Theorem

Let f̃ : H
n → H

n
be as in the first step. Then, if {u0, . . . , un} are the vertices

of a simplex of volume vn, the simplex on
{
f̃ (u0), . . . , f̃ (un)

}
also has volume

vn.
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Gromov norm

Let X be a topological space, and consider Ck(X ;R). We make this a normed
vector space by setting

∥c∥ = inf

{∑
i

|ai |
∣∣∣ c =

∑
i

aiσi

}

(i) Let f : M → N be a continuous map between manifolds. Then,

∥M∥ ≥ |deg f | · ∥N∥.

In particular, ∥·∥ is homotopy invariant.

(ii) If M admits a continuous self-map of degree at least 2, then ∥M∥ = 0. Hence,
all spheres and the torus have Gromov norm 0.
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Let X be a topological space, and consider Ck(X ;R). We make this a normed
vector space by setting

∥c∥ = inf

{∑
i

|ai |
∣∣∣ c =

∑
i

aiσi

}

This norm descends to a semi-norm on the quotient space
Hk(X ;R) = Zk(X )/Bk(X ):

∥z∥ = inf {∥c∥ | c ∈ Zk , z = [c]}

(i) Let f : M → N be a continuous map between manifolds. Then,

∥M∥ ≥ |deg f | · ∥N∥.

In particular, ∥·∥ is homotopy invariant.

(ii) If M admits a continuous self-map of degree at least 2, then ∥M∥ = 0. Hence,
all spheres and the torus have Gromov norm 0.
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Gromov norm

Definition ▶ Gromov norm

For a compact oriented connected manifold M, with fundamental class [M] ∈
Hn(M;R), we define its Gromov norm as

∥M∥ = ∥[M]∥

(i) Let f : M → N be a continuous map between manifolds. Then,

∥M∥ ≥ |deg f | · ∥N∥.

In particular, ∥·∥ is homotopy invariant.

(ii) If M admits a continuous self-map of degree at least 2, then ∥M∥ = 0. Hence,
all spheres and the torus have Gromov norm 0.
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Gromov norm

Properties:

(i) Let f : M → N be a continuous map between manifolds. Then,

∥M∥ ≥ |deg f | · ∥N∥.

In particular, ∥·∥ is homotopy invariant.

(ii) If M admits a continuous self-map of degree at least 2, then ∥M∥ = 0. Hence,
all spheres and the torus have Gromov norm 0.
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Gromov norm

Properties:

(i) Let f : M → N be a continuous map between manifolds. Then,

∥M∥ ≥ |deg f | · ∥N∥.

In particular, ∥·∥ is homotopy invariant.

(ii) If M admits a continuous self-map of degree at least 2, then ∥M∥ = 0. Hence,
all spheres and the torus have Gromov norm 0.

Proof.
If α ∈ Hk(M), ∥f∗(α)∥ ≤ ∥α∥ and degree satisfies

f∗([M]) = deg f · [N]
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Gromov norm

Properties:

(i) Let f : M → N be a continuous map between manifolds. Then,

∥M∥ ≥ |deg f | · ∥N∥.

In particular, ∥·∥ is homotopy invariant.

(ii) If M admits a continuous self-map of degree at least 2, then ∥M∥ = 0. Hence,
all spheres and the torus have Gromov norm 0.
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Gromov’s theorem

Theorem (Gromov)

If M is a compact oriented connected hyperbolic manifold of dimension n,

vol(M) = vn∥M∥.

In particular, hyperbolic volume is a homotopy invariant.
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Gromov’s theorem

Theorem (Gromov)

If M is a compact oriented connected hyperbolic manifold of dimension n,

vol(M) = vn∥M∥.

In particular, hyperbolic volume is a homotopy invariant.

Corollary

Any such manifold M has non-zero Gromov norm and if f : M → M is
continuous, |deg f | ≤ 1.
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Proof of Gromov’s Theorem

• The proof involves defining straight n−chains and their algebraic volume. The
inequality vol(M) ≤ vn∥M∥ is straightforward.

• The proof of vol(M) ≥ vn∥M∥ is quite technical, and requires the notion of
ε−efficient cycles and computations involving the Haar measure on
Isom(Hn) ≃ SO(n, 1).

• There is a more conceptual proof due to Milnor and Thurston, but that involves
notions of measure homology. However, these methods can be used to
generalize the theorem to (G ,X )−manifolds and equivariant cohomology.
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Third step

Theorem

Let f̃ : H
n → H

n
be as in the first step. Then, if {u0, . . . , un} are the vertices

of a simplex of volume vn, the simplex on
{
f̃ (u0), . . . , f̃ (un)

}
also has volume

vn.
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Third step

The proof proceeds by contradiction, assuming that the simplex σ(f̃ (w0), . . . , f̃ (wn))
has volume vn − 2ε, where σ(w0, . . . ,wn) has volume vn. By continuity, there are
neighborhoods Uj of wj such that vol(σ(f̃ (u0), . . . , f̃ (un))) ≤ vn − ε. Using the
techniques as in the proof that vol(M) ≥ vn∥M∥, we get a contradiction.
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Fourth step

Theorem

Let n ≥ 3 and P : ∂Hn → ∂Hn be a continuous injection, such that
vol(σ(P(u0), . . . ,P(un))) = vn whenever vol(σ(u0, . . . , un)) = vn. Then P is
induced by an isometry.
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Fourth step

Using the result of the second step, P maps vertices of any regular ideal n−simplex
to the vertices of another. As any two such simplices are isometric, we can compose
P with an isometry Q ∈ Isom(Hn) so that now P ◦ Q fixes some simplex with
vertices ∞, v1, . . . , vn, where the vj lie on Rn × 0.

Lemma

Let σ ∈ Sn have vertices ∞, v1, . . . , vn where vi ∈ Rn × {0}. Then σ is
regular if and only if the Euclidean simplex on v1, . . . , vn is regular.
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Fourth step

Hence, P ◦ Q fixes a dense set of points in ∂Hn and therefore must be the identity
by continuity. ■
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End of Gromov’s proof

Hn Hn

M1 = H
n/Γ1 M2 = H

n/Γ2

f̃

p1 p2

f

f̃ ◦ γ = f∗(γ) ◦ f̃ , γ ∈ Γ1

holds over all H
n
.
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End of Gromov’s proof

Combining the results so far, the lift f̃ of f extends to a continuous injection of the
boundary ∂Hn, and is induced by some isometry Q there. We thus get the relation

Q ◦ γ = f∗(γ) ◦ Q,

for all γ ∈ Γ1, on ∂Hn. As every term involves an isometry of Hn, the relation must
hold on all of Hn.
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End of Gromov’s proof

Consider the map q : M1 → M2 defined as

q(p1(x)) = p2(Q(x)), x ∈ Hn

Then it is easy to check that q is a well-defined bijection, and is an isometry because
p1, p2 and Q are local isometries. Finally,

H(t, p1(x)) = p2(tf̃ (x) + (1− t)Q(x))

defines a homotopy of f with q. ■
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Thank You!
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