Aaratrick Basu

Mostow's Theorem

An Applicatio

Gromov' Proof Mostow Rigidity Kleinian Groups Fall 2024

Aaratrick Basu

University of Virginia

26th November, 2024

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Introduction

Introduction

Mostow Rigidity

Aaratrick Basu

Theorem An Applica Gromov's Proof

• Hyperbolic polygons and convex polyhedra are *rigid*: they are determined uniquely up to isometry by only their angles.

Introduction

Mostow Rigidity

Aaratrick Basu

Theorem An Applica Gromov's Proof

- Hyperbolic polygons and convex polyhedra are *rigid*: they are determined uniquely up to isometry by only their angles.
- Hyperbolic surfaces show the opposite behaviour: loosely, there is a 6g − 6 dimensional space of *distinct* hyperbolic structures on any closed surface of genus g ≥ 2.

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Mostow Rigidity

Aaratrick Basu

Theorem An Applica Gromov's Proof

- Hyperbolic polygons and convex polyhedra are *rigid*: they are determined uniquely up to isometry by only their angles.
- Hyperbolic surfaces show the opposite behaviour: loosely, there is a 6g − 6 dimensional space of *distinct* hyperbolic structures on any closed surface of genus g ≥ 2.
- Mostow's result is that the rigidity behaviour is what persists in higher dimensions.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Mostow's Theorem

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Statement of the Theorem

Theorem 1.1 (Mostow, 1973)

Let $n \geq 3$ and M_1, M_2 be two *n*-dimensional compact connected oriented hyperbolic manifolds. If $f: M_1 \to M_2$ is a homotopy equivalence, there exists an isometry $q: M_1 \to M_2$ that is homotopic to f.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Statement of the Theorem

Theorem 1.2 (Sharper Formulation)

Let $M_i \simeq \mathbb{H}^n / \Gamma_i$, i = 1, 2, be as above. If there is a group isomorphism $\varphi : \Gamma_1 \to \Gamma_2$, then there is an isometry $q \in \text{Isom}(\mathbb{H}^n)$ such that

$$\boldsymbol{q} \circ \boldsymbol{\gamma} = \varphi(\boldsymbol{\gamma}) \circ \boldsymbol{q},$$

holds for all $\gamma \in \Gamma_1$. In particular, q induces an isometry $\tilde{\varphi} : M_1 \to M_2$ for which $\tilde{\varphi}_* = \varphi$.

Aaratrick Basu

Mostow's Theorem

- An Application
- Gromov' Proof

Motivation

• Rigidity of hyperbolic polyhedra

Motivation

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

- An Application
- Gromov's Proof

- Rigidity of hyperbolic polyhedra
- Behaviour of lattices in "nice" groups like SO(n, 1).

Motivation

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

- An Application
- Gromov's Proof

- Rigidity of hyperbolic polyhedra
- Behaviour of lattices in "nice" groups like SO(n, 1).
- Marden's isomorphism theorem:

Theorem (Marden, 1974)

Let G be a geometrically finite Kleinian group without any elliptics, and $\Phi: \Omega(G) \to \Omega(H)$ is a conformal map that induces an isomorphism $\phi: G \to H$ by the correspondence $\phi(g) = \Phi \circ g \circ \Phi^{-1}$. Then Φ is induced by an isometry (Möbius transformation) A and $\phi(g) = AgA^{-1}$.

Extensions

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem 1.3 (Prasad, 1974)

Mostow's result holds if we weaken the compactness assumption to the requirement of finite volume.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

Extensions

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem 1.4 (Thurston et al, 1980s)

If $f: M_1 \to M_2$ is a smooth map such that $vol(M_1) = |\deg f| vol(M_2)$, then f is homotopic to a locally isometric covering of M_1 onto M_2 , of degree $|\deg f|$.

・ロト・西ト・西ト・ 日・ うらぐ

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof Consider the lift \tilde{f} of f:

Note that $\tilde{f} \circ \gamma = f_*(\gamma) \circ \tilde{f}$ holds on \mathbb{H}^n , for all $\gamma \in \Gamma_1$, for a suitable choice of basepoints.

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem

Homotoping f to be smooth, \tilde{f} is a quasi-isometry which extends to a continuous map $\tilde{f}: \overline{\mathbb{H}}^n \to \overline{\mathbb{H}}^n$, such that $\tilde{f}|_{\partial \mathbb{H}^n}$ is injective and $\tilde{f} \circ \gamma = f_*(\gamma) \circ \tilde{f}$ holds on all of $\overline{\mathbb{H}}^n$, for all $\gamma \in \Gamma_1$.

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

• Gromov: $\tilde{f}|_{\partial \mathbb{H}^n}$ is induced by an isometry, which satisfies the requirements. This is shown by looking at images of ideal simplices, and using the Gromov norm.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Aaratrick Basu Mostow's Theorem

Mostow Rigidity

An Applicatio

- Gromov: $\tilde{f}|_{\partial \mathbb{H}^n}$ is induced by an isometry, which satisfies the requirements. This is shown by looking at images of ideal simplices, and using the Gromov norm.
- Tukia: Same strategy, but uses analytic techniques from the theory of quasi-conformal maps.

Aaratrick Basu

Mostow's Theorem

- An Application
- Gromov's Proof

• Gromov: $\widetilde{f}|_{\partial \mathbb{H}^n}$ is induced by an isometry, which satisfies the requirements. This is shown by looking at images of ideal simplices, and using the Gromov norm.

• Tukia: Same strategy, but uses analytic techniques from the theory of quasi-conformal maps.

Theorem

Let G be a nonelementary Kleinian group, $\zeta \in \Lambda(G)$ a conical limit point, and $f : \mathbb{S}^2 \to \mathbb{S}^2$ a homeomorphism which is differentiable at ζ with nonzero derivative. Suppose $\phi : G \to H$ is a homomorphism to another Kleinian group H such that $f \circ g = \phi(g) \circ f$. Then f is a Möbius transformation.

Methods of Proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Mostow's

An Application

Mostow Rigidity

Aaratrick Basu

- Gromov: $\tilde{f}|_{\partial \mathbb{H}^n}$ is induced by an isometry, which satisfies the requirements. This is shown by looking at images of ideal simplices, and using the Gromov norm.
- Tukia: Same strategy, but uses analytic techniques from the theory of quasi-conformal maps.
- Besson-Courtois-Gallot: Probabilistic approach, using the so-called volume entropy of Riemannian manifolds.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

An Application

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Let S_g be a closed oriented surface of genus g.

Theorem (Dehn-Nielsen-Baer)

 $Out(\pi_1(S_g))$ is isomorphic to $Mod(S_g)$, and in particular is an infinite group.

Theorem (Hurwitz)

 $\mathsf{Isom}(S_g)$ has size at most 84(g-1).

$Out(\pi_1(M))$ of hyperbolic manifolds

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

$Out(\pi_1(M))$ of hyperbolic manifolds

Theorem

Mostow Rigidity

Aaratrick Basu

An Application

Let *M* be a closed oriented hyperbolic manifold of dimension $n \ge 3$. Then $Out(\pi_1(M)) \simeq Isom(M)$, and is hence a finite group.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Let $\Gamma = \pi_1(M)$. We have a map $heta: \mathsf{Isom}(M) o \mathsf{Out}(\Gamma)$

given by $f \mapsto [f_*]$, because f_* is an isomorphism of $\pi_1(M, x)$ onto $\pi_1(M, f(x))$.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - のへで

The Proof

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Injectivity

Suppose
$$\theta(f) = [1]$$
. There is a lift $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ of f such that $\tilde{f} \circ \gamma = \gamma \circ \tilde{f}$ for all $\gamma \in \Gamma$.

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 国 ▶ ◆ 回 ▶

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Injectivity

Suppose $\theta(f) = [1]$. There is a lift $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ of f such that $\tilde{f} \circ \gamma = \gamma \circ \tilde{f}$ for all $\gamma \in \Gamma$.

Let $\delta \neq 1$ be in the centralizer. As $\gamma \in \Gamma \setminus \{1\}$ is hyperbolic, with unique axis ℓ_{γ} , we get

$$\delta(\ell_\gamma) = \gamma(\delta(\ell_\gamma)) \implies \delta(\ell_\gamma) = \ell_\gamma,$$

and so δ is not parabolic. Let $F = Fix(\delta)$. Then, for all $\gamma \in \Gamma \setminus \{1\}, \ell_{\gamma} \subset F$ and $\gamma(F) = F$.

1

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Injectivity

Suppose $\theta(f) = [1]$. There is a lift $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ of f such that $\tilde{f} \circ \gamma = \gamma \circ \tilde{f}$ for all $\gamma \in \Gamma$.

Let $\delta \neq 1$ be in the centralizer. As $\gamma \in \Gamma \setminus \{1\}$ is hyperbolic, with unique axis ℓ_{γ} , we get

$$\delta(\ell_{\gamma}) = \gamma(\delta(\ell_{\gamma})) \implies \delta(\ell_{\gamma}) = \ell_{\gamma},$$

and so δ is not parabolic. Let $F = Fix(\delta)$. Then, for all $\gamma \in \Gamma \setminus \{1\}, \ell_{\gamma} \subset F$ and $\gamma(F) = F$.

Fix some $x_0 \in F$ and a line ℓ_0 through x_0 that is orthogonal to F. Then, for small ε ,

$$\overline{\mathcal{N}_{\varepsilon}(\ell_0)} \cap (\Gamma \setminus \{1\}) \cdot \overline{\mathcal{N}_{\varepsilon}(\ell_0)} = \emptyset,$$

and so we get a closed subset of M that is not compact. $\rightarrow \leftarrow$

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Surjectivity

Any automorphism of Γ is induced by a homotopy equivalence of M, because M is a $K(\Gamma, 1)$ space. Mostow rigidity gives an isometry f which induces the automorphism, and hence θ is surjective.

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov': Proof

Surjectivity

Any automorphism of Γ is induced by a homotopy equivalence of M, because M is a $K(\Gamma, 1)$ space. Mostow rigidity gives an isometry f which induces the automorphism, and hence θ is surjective.

Finiteness

It can be shown that Isom(M) contains finitely many homotopy classes using the fact that M is compact and hence the sup norm makes Isom(M) into a compact group.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Gromov's Proof

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

(i) Extend \tilde{f} to the boundary $\partial \mathbb{H}^n$ as mentioned before.

Outline of Gromov's proof

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

- (i) Extend \tilde{f} to the boundary $\partial \mathbb{H}^n$ as mentioned before.
- (ii) Show that the volume function vol() attains its supremum v_n over all geodesic n-simplices at the regular and ideal n-simplex.

Outline of Gromov's proof

Outline of Gromov's proof

Rigidity Aaratrick Basu

Mostow

Mostow's Theorem

An Application

- (i) Extend \tilde{f} to the boundary $\partial \mathbb{H}^n$ as mentioned before.
- (ii) Show that the volume function vol() attains its supremum v_n over all geodesic n-simplices at the regular and ideal n-simplex.
- (iii) If $\{u_0, \ldots, u_n\}$ are the vertices of a simplex of volume v_n , then the simplex on $\{\tilde{f}(u_0), \ldots, \tilde{f}(u_n)\}$ also has volume v_n .

Outline of Gromov's proof

Rigidity Aaratrick Basu

Mostow

Mostow's Theorem

An Application

- (i) Extend \tilde{f} to the boundary $\partial \mathbb{H}^n$ as mentioned before.
- (ii) Show that the volume function vol() attains its supremum v_n over all geodesic n-simplices at the regular and ideal n-simplex.
- (iii) If $\{u_0, \ldots, u_n\}$ are the vertices of a simplex of volume v_n , then the simplex on $\{\tilde{f}(u_0), \ldots, \tilde{f}(u_n)\}$ also has volume v_n .
- (iv) Show that the above fact implies that \tilde{f} is induced by an isometry of \mathbb{H}^n .

Outline of Gromov's proof

Aaratrick Basu

Mostow Rigidity

Theorem

An Application

- (i) Extend \tilde{f} to the boundary $\partial \mathbb{H}^n$ as mentioned before.
- (ii) Show that the volume function vol() attains its supremum v_n over all geodesic n-simplices at the regular and ideal n-simplex.
- (iii) If $\{u_0, \ldots, u_n\}$ are the vertices of a simplex of volume v_n , then the simplex on $\{\tilde{f}(u_0), \ldots, \tilde{f}(u_n)\}$ also has volume v_n .
- (iv) Show that the above fact implies that \tilde{f} is induced by an isometry of \mathbb{H}^n . Only step where $n \ge 3$ is needed!

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof Consider the lift \tilde{f} of f:

Note that $\tilde{f} \circ \gamma = f_*(\gamma) \circ \tilde{f}$ holds on \mathbb{H}^n , for all $\gamma \in \Gamma_1$, for a suitable choice of basepoints.

First step

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▼

First step

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem

Homotoping f to be smooth, \tilde{f} is a pseudo-isometry which extends to a continuous map $\tilde{f}: \overline{\mathbb{H}}^n \to \overline{\mathbb{H}}^n$, such that $\tilde{f}|_{\partial \mathbb{H}^n}$ is injective and $\tilde{f} \circ \gamma = f_*(\gamma) \circ \tilde{f}$ holds on all of $\overline{\mathbb{H}}^n$, for all $\gamma \in \Gamma_1$.

First step

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

f is a homotopy equivalence of compact manifolds, and is hence homotopic to a smooth one. By compactness we get f and its homotopy inverse have finite maximum dilatation, and this information can be lifted to get $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ is a Lipschitz map.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

f is a homotopy equivalence of compact manifolds, and is hence homotopic to a smooth one. By compactness we get f and its homotopy inverse have finite maximum dilatation, and this information can be lifted to get $\tilde{f} : \mathbb{H}^n \to \mathbb{H}^n$ is a Lipschitz map.

Finally, using the fact that there is a compact Dirichlet domain for Γ_1 and since lifts commute with the action of Γ_1 , we can conclude that \tilde{f} is a *pseudo-isometry*:

$$\frac{1}{C_1}d(x_1,x_2)-C_2\leq d(\widetilde{f}(x_1),\widetilde{f}(x_2))\leq C_1d(x_1,x_2).$$

First step

・ロト・西ト・西ト・日・ 白・

First step

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem

Any pseudo-isometry $P : \mathbb{H}^n \to \mathbb{H}^n$ extends to a continuous map $P : \overline{\mathbb{H}}^n \to \overline{\mathbb{H}}^n$ that is an injection restricted to the boundary $\partial \mathbb{H}^n$.

First step

Mostow Rigidity Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem

Any pseudo-isometry $P : \mathbb{H}^n \to \mathbb{H}^n$ extends to a continuous map $P : \overline{\mathbb{H}}^n \to \overline{\mathbb{H}}^n$ that is an injection restricted to the boundary $\partial \mathbb{H}^n$.

Using the Jordan-Schoenflies theorem, P is in fact a homeomorphism of the sphere at infinity.

Aaratrick Basu

Mostow Rigidity

Theorem

An Application

Gromov's Proof

Let \mathscr{S}_n be the set of all ideal *n*-simplices in $\overline{\mathbb{H}}^n$ that have hyperbolic faces.

Definition > Regular simplices

A simplex in $\overline{\mathbb{H}}^n$ is said to be regular if any permutation of its vertices is induced by an isometry.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof Let \mathscr{S}_n be the set of all ideal *n*-simplices in $\overline{\mathbb{H}}^n$ that have hyperbolic faces.

Definition > Regular simplices

A simplex in $\overline{\mathbb{H}}^n$ is said to be regular if any permutation of its vertices is induced by an isometry.

Lemma

Let $\sigma \in \mathscr{S}_n$ have vertices ∞, v_1, \ldots, v_n where $v_i \in \mathbb{R}^n \times \{0\}$. Then σ is regular if and only if the Euclidean simplex on v_1, \ldots, v_n is regular.

Second step

・ロト・西ト・西ト・日・ 白・

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Second step

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem

The volume function vol() restricted to \mathscr{S}_n attains its supremum v_n exactly at the regular and ideal n-simplices.

Rigidity Aaratrick Basu

Mostow

Mostow's Theorem

An Application

Gromov's Proof Sketch of the proof:

• For n = 2, every ideal triangle is regular and has area $v_2 = \pi$.

heorem

Mostow Rigidity

Aaratrick Basu

An Application

Gromov's Proof Sketch of the proof:

- For n = 2, every ideal triangle is regular and has area $v_2 = \pi$.
- For n = 3, it is a direct computation that

 $\mathsf{vol}(\sigma) = \Lambda(\alpha(\sigma)) + \Lambda(\beta(\sigma)) + \Lambda(\gamma(\sigma)),$

where Λ is the Lobachevsky function

$$\Lambda(\theta) = \int_0^\theta -\log|\sin t| \mathrm{d}t,$$

and so σ is of maximal volume iff $\alpha = \beta = \gamma = \frac{\pi}{3}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

• For $n \ge 2$, we have the inequality

$$\frac{n-1}{n^2} \leq \frac{v_{n+1}}{v_n} \leq \frac{1}{n}.$$

Using this inequality and some analysis of the integrals defining the volumes, the result follows.

Third Step

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem

Let $\tilde{f}: \overline{\mathbb{H}}^n \to \overline{\mathbb{H}}^n$ be as in the first step. Then, if $\{u_0, \ldots, u_n\}$ are the vertices of a simplex of volume v_n , the simplex on $\{\tilde{f}(u_0), \ldots, \tilde{f}(u_n)\}$ also has volume v_n .

Aaratrick Basu

Mostow's Theorem

An Applicatio

Gromov's Proof Let X be a topological space, and consider $C_k(X; \mathbb{R})$. We make this a normed vector space by setting

$$\|c\| = \inf\left\{\sum_i |a_i| \, \Big| \, c = \sum_i a_i \sigma_i\right\}$$

Gromov norm

・ロト・「「「・」」・ 「」・ 「」・ (「」・

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Let X be a topological space, and consider $C_k(X; \mathbb{R})$. We make this a normed vector space by setting

$$\|c\| = \inf\left\{\sum_{i} |a_i| \, \Big| \, c = \sum_{i} a_i \sigma_i\right\}$$

This norm descends to a semi-norm on the quotient space $H_k(X; \mathbb{R}) = Z_k(X)/B_k(X)$:

$$||z|| = \inf \{ ||c|| \mid c \in Z_k, z = [c] \}$$

Gromov norm

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Gromov norm

Definition > Gromov norm

For a compact oriented connected manifold M, with fundamental class $[M] \in H_n(M; \mathbb{R})$, we define its Gromov norm as

 $\|M\|=\|[M]\|$

Gromov norm

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Properties:

(i) Let $f: M \to N$ be a continuous map between manifolds. Then,

 $\|M\| \ge |\deg f| \cdot \|N\|.$

In particular, $\|\cdot\|$ is homotopy invariant.

Gromov norm

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Applicatio

Gromov's Proof Properties:

(i) Let $f: M \to N$ be a continuous map between manifolds. Then,

```
\|M\| \ge |\deg f| \cdot \|N\|.
```

```
In particular, \|\cdot\| is homotopy invariant.
```

Proof. If $\alpha \in H_k(M)$, $||f_*(\alpha)|| \le ||\alpha||$ and degree satisfies

 $f_*([M]) = \deg f \cdot [N]$

Gromov norm

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Properties:

(i) Let $f: M \to N$ be a continuous map between manifolds. Then,

 $\|M\| \ge |\deg f| \cdot \|N\|.$

In particular, $\|\cdot\|$ is homotopy invariant.

(ii) If *M* admits a continuous self-map of degree at least 2, then ||M|| = 0. Hence, all spheres and the torus have Gromov norm 0.

Gromov's theorem

Mostow's Theorem

An Application

Mostow Rigidity

Aaratrick Basu

Gromov's Proof

Theorem (Gromov)

If M is a compact oriented connected hyperbolic manifold of dimension n,

 $\operatorname{vol}(M) = v_n \|M\|.$

In particular, hyperbolic volume is a homotopy invariant.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Gromov's theorem

Theorem (Gromov)

If M is a compact oriented connected hyperbolic manifold of dimension n,

 $\operatorname{vol}(M) = v_n \|M\|.$

In particular, hyperbolic volume is a homotopy invariant.

Corollary

Any such manifold *M* has non-zero Gromov norm and if $f : M \to M$ is continuous, $|\deg f| \le 1$.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Proof of Gromov's Theorem

The proof involves defining straight n−chains and their algebraic volume. The inequality vol(M) ≤ v_n ||M|| is straightforward.

Mostow Rigidity Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Proof of Gromov's Theorem

- The proof involves defining straight n−chains and their algebraic volume. The inequality vol(M) ≤ v_n ||M|| is straightforward.
- The proof of vol(M) ≥ v_n ||M|| is quite technical, and requires the notion of ε-efficient cycles and computations involving the Haar measure on lsom(Hⁿ) ≃ SO(n, 1).

Proof of Gromov's Theorem

The proof involves defining straight n−chains and their algebraic volume. The inequality vol(M) ≤ v_n ||M|| is straightforward.

Mostow Rigidity

Aaratrick Basu

Gromov's

Proof

- The proof of vol(M) ≥ v_n ||M|| is quite technical, and requires the notion of ε-efficient cycles and computations involving the Haar measure on lsom(Hⁿ) ≃ SO(n, 1).
- There is a more conceptual proof due to Milnor and Thurston, but that involves notions of measure homology. However, these methods can be used to generalize the theorem to (G, X)-manifolds and equivariant cohomology.

Third step

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem

Let $\tilde{f}: \overline{\mathbb{H}}^n \to \overline{\mathbb{H}}^n$ be as in the first step. Then, if $\{u_0, \ldots, u_n\}$ are the vertices of a simplex of volume v_n , the simplex on $\{\tilde{f}(u_0), \ldots, \tilde{f}(u_n)\}$ also has volume v_n .

Third step

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

The proof proceeds by contradiction, assuming that the simplex $\sigma(\tilde{f}(w_0), \ldots, \tilde{f}(w_n))$ has volume $v_n - 2\varepsilon$, where $\sigma(w_0, \ldots, w_n)$ has volume v_n . By continuity, there are neighborhoods U_j of w_j such that $\operatorname{vol}(\sigma(\tilde{f}(u_0), \ldots, \tilde{f}(u_n))) \leq v_n - \varepsilon$. Using the techniques as in the proof that $\operatorname{vol}(M) \geq v_n \|M\|$, we get a contradiction.

Fourth step

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Theorem

Let $n \geq 3$ and $P : \partial \mathbb{H}^n \to \partial \mathbb{H}^n$ be a continuous injection, such that $\operatorname{vol}(\sigma(P(u_0), \ldots, P(u_n))) = v_n$ whenever $\operatorname{vol}(\sigma(u_0, \ldots, u_n)) = v_n$. Then P is induced by an isometry.

Fourth step

Mostow Rigidity Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof Using the result of the second step, P maps vertices of any regular ideal n-simplex to the vertices of another. As any two such simplices are isometric, we can compose P with an isometry $Q \in \text{Isom}(\mathbb{H}^n)$ so that now $P \circ Q$ fixes some simplex with vertices ∞, v_1, \ldots, v_n , where the v_j lie on $\mathbb{R}^n \times 0$.

Lemma

Let $\sigma \in \mathscr{S}_n$ have vertices ∞, v_1, \ldots, v_n where $v_i \in \mathbb{R}^n \times \{0\}$. Then σ is regular if and only if the Euclidean simplex on v_1, \ldots, v_n is regular.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Fourth step

Aaratrick Basu

Fourth step

<ロト < 団 > < 巨 > < 巨 > 三 の < で</p>

Mostow's Theorem

An Application

Gromov's Proof

Hence, $P \circ Q$ fixes a dense set of points in $\partial \mathbb{H}^n$ and therefore must be the identity by continuity.

End of Gromov's proof

$$\widetilde{f}\circ\gamma=f_*(\gamma)\circ\widetilde{f},\gamma\in\mathsf{F}_1$$

holds over all $\overline{\mathbb{H}}^n$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへ⊙

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

End of Gromov's proof

Rigidity Aaratrick Basu

Mostow

Mostow's Theorem

An Application

Gromov's Proof

Combining the results so far, the lift \tilde{f} of f extends to a continuous injection of the boundary $\partial \mathbb{H}^n$, and is induced by some isometry Q there. We thus get the relation

$$Q \circ \gamma = f_*(\gamma) \circ Q,$$

for all $\gamma \in \Gamma_1$, on $\partial \mathbb{H}^n$. As every term involves an isometry of \mathbb{H}^n , the relation must hold on all of \mathbb{H}^n .

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Consider the map $q: M_1 \rightarrow M_2$ defined as

$$q(p_1(x)) = p_2(Q(x)), x \in \mathbb{H}^n$$

End of Gromov's proof

Then it is easy to check that q is a well-defined bijection, and is an isometry because p_1, p_2 and Q are local isometries. Finally,

$$H(t,p_1(x))=p_2(t\widetilde{f}(x)+(1-t)Q(x))$$

defines a homotopy of f with q.

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof

Thank You!

References

Mostow Rigidity

Aaratrick Basu

Mostow's Theorem

An Application

Gromov's Proof Riccardo Benedetti and Carlo Petronio. *Lectures on Hyperbolic geometry*. Springer, 1992.

- Albert Marden. *Outer Circles.* Cambridge, 2007.
- 🔋 Bruno Martelli.

An introduction to geometric topology, 2022.

William Thurston.

The geometry and topology of 3-manifolds. *Lecture notes*, 1978.